02345nam a2200325 i 4500991001802099707536030930s2003 enk b 001 0 eng d0521811651b12199229-39ule_instDip.to Matematicaeng515.73221AMS 47SAMS 47S50LC QA322.2P545Pisier, Gilles49047Introduction to operator space theory /Gilles PisierCambridge :Cambridge University Press,2003vii, 478 p. ;23 cmLondon Mathematical Society lecture note series,0076-0552 ;294Includes bibliographical references (p. [457]-475) and indexIntroduction to Operator Spaces ; Completely bounded maps ; Minimal tensor product ; Minimal and maximal operator space structures on a Banach space ; Projective tensor product ; The Haagerup tensor product ; Characterizations of operator algebras ; The operator Hilbert space ; Group C*-algebras ; Examples and comments ; Comparisons ; Operator Spaces and C*-tensor products ; C*-norms on tensor products ; Nuclearity and approximation properties ; C* ; Kirchberg's theorem on decomposable maps ; The weak expectation property ; The local lifting property ; Exactness ; Local reflexivity ; Grothendieck's theorem for operator spaces ; Estimating the norms of sums of unitaries ; Local theory of operator spaces ; Completely isomorphic C*-algebras ; Injective and projective operator spaces ; Operator Spaces and Non Self-Adjoint Operator Algebras ; Maximal tensor products and free products of non self-adjoint operator algebras ; The Blechter-Paulsen factorization ; Similarity problems ; The Sz-nagy-halmos similarity problem ; Solutions to the exercisesOperator spaceshttp://catdir.loc.gov/catdir/toc/cam031/2002031358.htmlTable of contentshttp://catdir.loc.gov/catdir/description/cam0210/2002031358.htmlPublisher description.b1219922913-11-1230-09-03991001802099707536LE013 47S PIS11 (2003)12013000140384le013pE60.66-l- 01010.i1257373530-09-03Introduction to operator space theory157338UNISALENTOle01330-09-03ma -engenk01