01063nam a2200253 i 4500991001558369707536060331s2000 njuab c b 001 0 eng d0766014150b1339115x-39ule_instDip.to Studi Giuridiciita973.049607321Weatherford, Carole Boston,1956-623473The African-American struggle for legal equality in American history /Carole Boston WeatherfordBerkeley Heights, NJ :Enslow,c2000128 p. :ill., 1 map ;24 cmIn American historyInclude riferimenti bibliografici (p. 126) e indiceAfroamericaniDiritti civiliStoria.b1339115x21-09-0631-03-06991001558369707536LE027 973.04 WEA01.0112027000119950le027-E25.10-l- 01010.i1421550031-03-06African-American struggle for legal equality in American history1091015UNISALENTOle02731-03-06ma -engnju4003710nam 22007095 450 991030014180332120220407171512.01-4939-0305-510.1007/978-1-4939-0305-4(CKB)2550000001198375(EBL)1698084(OCoLC)878921602(SSID)ssj0001176327(PQKBManifestationID)11760523(PQKBTitleCode)TC0001176327(PQKBWorkID)11130418(PQKB)11313577(MiAaPQ)EBC1698084(DE-He213)978-1-4939-0305-4(PPN)176101853(EXLCZ)99255000000119837520140124d2014 u| 0engur|n|---|||||txtccrCovering walks in graphs /by Futaba Fujie, Ping Zhang1st ed. 2014.New York, NY :Springer New York :Imprint: Springer,2014.1 online resource (123 p.)SpringerBriefs in Mathematics,2191-8198Description based upon print version of record.1-4939-0304-7 Includes bibliographical references and index.1. Eulerian Walks -- 2. Hamiltonian Walks -- 3. Traceable Walks -- References -- Index. .Covering Walks in Graphs is aimed at researchers and graduate students in the graph theory community and provides a comprehensive treatment on measures of two well studied graphical properties, namely Hamiltonicity and traversability in graphs. This text looks into the famous Kӧnigsberg Bridge Problem, the Chinese Postman Problem, the Icosian Game and the Traveling Salesman Problem as well as well-known mathematicians who were involved in these problems. The concepts of different spanning walks with examples and present classical results on Hamiltonian numbers and upper Hamiltonian numbers of graphs are described; in some cases, the authors provide proofs of these results to illustrate the beauty and complexity of this area of research. Two new concepts of traceable numbers of graphs and traceable numbers of vertices of a graph which were inspired by and closely related to Hamiltonian numbers are introduced. Results are illustrated on these two concepts and the relationship between traceable concepts and Hamiltonian concepts are examined. Describes several variations of traceable numbers, which provide new frame works for several well-known Hamiltonian concepts and produce interesting new results.SpringerBriefs in Mathematics,2191-8198Graph theoryCombinatorial analysisApplied mathematicsEngineering mathematicsGraph Theoryhttps://scigraph.springernature.com/ontologies/product-market-codes/M29020Combinatoricshttps://scigraph.springernature.com/ontologies/product-market-codes/M29010Applications of Mathematicshttps://scigraph.springernature.com/ontologies/product-market-codes/M13003Graph theory.Combinatorial analysis.Applied mathematics.Engineering mathematics.Graph Theory.Combinatorics.Applications of Mathematics.511.5Fujie Futabaauthttp://id.loc.gov/vocabulary/relators/aut721699Zhang Pingauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK9910300141803321Covering Walks in Graphs2512353UNINA