01379nam a2200361 i 450099100132611970753620020507191414.0930428s1990 us ||| | eng 0824780884b10831903-39ule_instLE01310549ExLDip.to Matematicaeng515.7AMS 47-06AMS 47-XXQA171.T73Clement, Philippe42488Semigroup theory and applications /eds. P. Clement, S. Invernizzi, E. Mitidieri, I. I. VrabieNew York ; Basel :Marcel Dekker,1990x, 454 p. ;25 cmLecture notes in pure and applied mathematics,0075-8469 ;116Includes indexMeeting Trends in Semigroup theory and applications, held Sept.28-Oct.2, 1987 at the Dipartimento di Scienze Matematiche, Univ. Trieste, Italy.SemigroupsCongressesInvernizzi, SergioMitidieri, EnzoVrabie, Ioan I..b1083190323-02-1728-06-02991001326119707536LE013 47-XX CLE11 (1989)12013000130347le013-E0.00-l- 02020.i1094093528-06-02Semigroup theory and applications923714UNISALENTOle01301-01-93ma -engus 0112283nam 2200613Ia 450 991100664820332120240909080908.00-12-810019-20-12-382208-4(Safari)9780123822079(OCoLC)892421218(OCoLC)ocn892421218(CaSebORM)9780123822079(MiAaPQ)EBC1764743(CKB)3710000000217547(EXLCZ)99371000000021754720141006d2014 uy 0engurunu|||||txtrdacontentcrdamediacrrdacarrierSurface production operationsVolume 2[electronic resource] design of gas-handling systems and facilities /Maurice I. Stewart, Jr3rd ed.Waltham, MA Gulf Professional Pub.c20141 online resource (1 v.) ill1-322-06781-3 0-12-382207-6 Includes bibliographical references and index.Front Cover -- Surface Production Operations: Design of Gas-Handling Systems and Facilities -- Copyright -- Contents -- Preface -- Acknowledgments -- Chapter One: Overview of Gas-Handling, Conditioning, and Processing Facilities -- 1.1. Heating -- 1.2. Separation -- 1.3. Cooling -- 1.4. Stabilization -- 1.5. Compression -- 1.6. Gas Treating -- 1.7. Gas Dehydration -- 1.8. Gas Processing -- Chapter Two: Basic Principles -- 2.1. Introduction -- 2.2. Fluid Analysis -- 2.3. Physical Properties -- 2.3.1. Equations of State -- 2.3.2. Molecular Weight and Apparent Molecular Weight -- 2.3.3. Gas Specific Gravity -- 2.3.4. Nonideal Gas Equations of State -- 2.3.5. Liquid Density and Specific Gravity -- 2.3.6. Liquid Volume -- 2.3.7. Viscosity -- 2.4. Flash Calculations -- 2.4.1. Determine Gas and Liquid Compositions -- 2.5. Characterizing the Flow Stream -- 2.6. Use of Computer Programs for Flash Calculations -- 2.7. Approximate Flash Calculations -- 2.8. Other Properties -- 2.9. Phase Equilibrium -- Chapter Three: Heat Transfer Theory -- 3.1. Objectives -- 3.2. What Is a Heat Exchanger? -- 3.2.1. Commonly Used Types of Heat Exchangers -- Shell-and-Tube -- Plate-and-Frame -- Plate-Fin -- Air-Cooled -- 3.2.2. Heat Exchangers-The Bad News -- 3.2.3. General Considerations -- 3.2.4. Company Engineering Standards and Specifications -- 3.2.5. Tube Vibration and Tube Rupture -- 3.2.6. Acoustic Resonance and Vibration -- 3.3. Process Specification -- 3.3.1. Process Specification Sheet -- 3.3.2. Design Data Sheet -- 3.3.3. Required Physical/Thermal Properties -- 3.4. Pressure Drop Considerations -- 3.4.1. Key Parameter for Design and Troubleshooting -- Tube side -- Shell side -- Other ways -- Typical Pressure gradients (DeltaP/L) -- Flow path lengths, ft or m (L) -- 3.5. Basic Heat Transfer Theory -- 3.5.1. Heat Transfer Mechanisms -- 3.5.2. Basic Equations.3.5.3. Flow of Heat -- 3.5.4. Multiple Transfer Mechanisms -- 3.6. Determination of Mean Temperature Difference -- 3.6.1. Mean Temperature Difference -- 3.6.2. Log Mean Temperature Difference -- 3.6.3. Nonconstant ``U´´ -- 3.6.4. Different Flow Arrangements -- 3.6.5. Nonlinear Temperature Profile -- 3.7. Selection of Temperature Approach (T2) -- 3.8. Determination of Heat Transfer Coefficient -- 3.8.1. Overview -- 3.8.2. Area Basis -- 3.8.3. Heat Transfer Coefficient-Clean Tube -- 3.8.4. Heat Transfer Coefficient-Fouled Tube -- 3.8.4.1. Fouling Factors -- 3.8.4.2. Fouling Considerations -- 3.8.4.3. Fouling Mechanisms -- 3.8.5. Evaluating Performance -- 3.8.6. Heat Transfer Research Inc. Computer Simulation Programs -- 3.9. Calculation of Film Coefficients -- 3.9.1. Inside Film Coefficient -- 3.9.2. Mass Velocity of a Fluid -- 3.9.3. Outside Film Coefficient in a Liquid Bath -- 3.9.4. Outside Film Coefficient for Shell-and-Tube Exchangers -- 3.10. Tube Metal Resistance -- 3.11. Approximate Overall Heat Transfer Coefficients -- 3.12. Determination of Process Heat Duty -- 3.12.1. Overview -- 3.12.2. Sensible Heat -- 3.12.3. Latent Heat -- 3.12.4. Heat Duty for Multiphase Streams -- 3.12.5. Natural Gas Sensible Heat Duty at Constant Pressure -- 3.12.6. Gas Heat Capacity -- 3.12.7. Calculation of Gas Pseudo Critical Pressure and Temperature -- 3.12.8. Oil Sensible Heat Duty -- 3.12.9. Water Sensible Heat Duty -- 3.12.10. Heat Duty Where There Are Phase Changes -- 3.12.11. Heat Loss to Atmosphere -- 3.12.12. Heat Transfer from a Fire Tube -- 3.12.13. Natural Draft Fire Tubes -- 3.12.14. Procedure to Size a Shell-and-Tube Heat Exchanger -- References -- Chapter Four: Heat Exchanger Configurations -- 4.1. Overview -- Fluid-fluid -- Cooling with air -- Bath heaters -- 4.2. Shell-and-Tube Exchangers -- 4.2.1. Tubular Exchanger Manufacturers Association.4.2.2. Common Services -- 4.2.3. Components (Figures4.1 and 4.2) -- 4.2.4. Configuration Considerations -- 4.2.5. Baffles -- 4.2.5.1. Pass Partition -- 4.2.5.2. Two-Pass Fixed Exchanger -- 4.2.5.3. Impingement -- 4.2.5.4. Transverse or Support (Figures4.7-4.10) -- Examples -- placeholder -- 4.2.5.5. Longitudinal -- 4.2.6. Use of Baffles -- 4.2.7. Types of Baffles -- 4.2.8. Installation of Baffles -- 4.2.9. Tubes -- 4.2.10. Shells -- 4.2.11. Tube Pitch (Figure4.11) -- 4.2.11.1. Square Pitch Is Easy to Clean -- 4.2.11.2. Triangular Pitch Common Pitches -- 4.2.12. Options -- 4.2.13. Classification of Exchangers -- 4.2.13.1. Nominal Diameter -- 4.2.13.2. Nominal Length -- 4.2.13.3. Type -- 4.2.14. Examples of Classification -- 4.2.15. Selection of Types -- 4.2.16. Selecting Heat Exchanger Components -- 4.2.17. Picking Heat Exchanger Components -- 4.2.17.1. Picking Shell Style -- 4.2.17.2. Picking Baffles -- 4.2.17.3. Picking Components -- 4.2.18. Fixed Tube Sheet -- 4.2.18.1. Advantages -- 4.2.18.2. Disadvantages -- 4.2.18.3. Heads -- 4.2.18.4. Uses -- 4.2.19. U Tube (Hairpin) -- 4.2.19.1. Advantages -- 4.2.19.2. Disadvantages -- 4.2.19.3. Heads -- 4.2.19.4. Uses -- 4.2.20. Floating Head -- 4.2.20.1. Advantages -- 4.2.20.2. Disadvantages -- 4.2.20.3. Heads -- 4.2.20.4. Uses -- 4.2.21. Placement of Fluid -- Tubes when: -- Shell when: -- 4.2.22. Mean Temperature Difference Correction Factor -- 4.2.23. Corrected MTD -- 4.2.24. Heat Exchanger Specification Sheet -- 4.2.25. Sizing Procedures -- 4.3. Double-Pipe Exchangers -- 4.3.1. Overview -- 4.3.1.1. Advantages -- 4.3.1.2. Disadvantages -- 4.3.1.3. Uses -- 4.3.2. Two Shells Joined at One End Through a ``Return Bonnet´´ (Figure4.32) -- 4.3.3. Hairpin Exchanger (Variation of U Tube) -- 4.3.3.1. Double Pipe -- 4.3.3.2. Multitube -- 4.3.4. Design of Finned Units -- 4.4. Plate-Fin Exchangers -- 4.4.1. Overview.4.4.2. Dependent on Application Requirements -- 4.5. Plate-and-Frame Exchangers -- 4.5.1. Overview -- 4.5.2. Advantages -- 4.5.3. Disadvantages -- 4.5.4. Plates -- 4.6. Indirect-Fired Heaters -- 4.6.1. Advantages -- 4.6.2. Disadvantage -- 4.6.3. Intermediate Liquid -- 4.6.4. Sizing Considerations -- 4.6.5. Heat Duty -- 4.6.6. Sizing Fire Tubes -- 4.6.7. Coil Sizing -- 4.6.7.1. Calculate the Coil Temperature -- 4.6.7.2. Calculate the Heat Duty (q) -- 4.6.7.3. Calculate the Overall Heat Transfer Coefficient (U) -- 4.6.7.4. Calculate Coil Length -- 4.6.8. Heater Sizing -- 4.7. Direct-Fired Heaters -- 4.7.1. Overview -- 4.7.2. Horizontal Tubes (Refer to Figure4.77) -- 4.7.2.1. Cabin -- 4.7.2.2. Two-Cell Box -- 4.7.2.3. Cabin with Bridge-Wall -- 4.7.3. End Fired Box -- 4.7.3.1. Single Row, Double Fired -- 4.7.4. Vertical Tubes (Refer to Figure4.78) -- 4.7.4.1. All Radiant -- 4.7.4.2. Cylindrical, Helical Coil -- 4.7.4.3. Cylindrical, with Cross-Flow Convection -- 4.7.4.4. Cylindrical, with Integral Convention -- 4.7.4.5. Arbor or Wicket -- 4.7.4.6. Single-Row, Double-Fired -- 4.7.5. Development of ``Hot Spots´´ and Tube Failure -- 4.7.6. Thermal Efficiency Considerations -- 4.7.7. Determining Required Heat Input -- 4.7.7.1. Flow Rate Determination -- 4.7.7.2. Total Heat Required -- 4.8. Air-Cooled Exchangers -- 4.8.1. General Considerations -- 4.8.2. Typical Air-Cooled Exchanger Configurations -- 4.8.3. Advantages of Forced Draft Design -- 4.8.4. Disadvantages of Forced Draft Design -- 4.8.5. Advantages of Induced Draft Design -- 4.8.6. Disadvantages of Induced Draft Design -- 4.8.7. Air-Side Control -- 4.8.8. Procedure for Calculating Number of Tubes Required for Aerial Coolers -- 4.8.8.1. Procedure for Sizing Air-Cooled Exchanger -- 4.8.9. Considerations When Sizing an Aerial Cooler -- 4.9. Cooling Towers -- 4.10. Other Types of Heat Exchangers.4.10.1. Electric Heat Exchangers -- 4.10.2. Heat Recovery Steam Generator -- 4.11. Heat Exchanger Selection -- 4.11.1. Guidelines We Should Follow -- 4.12. Comments on Example 4.3 -- Exercises -- Chapter Five: Hydrate Prediction and Prevention -- 5.1. Objectives -- 5.2. Overview -- 5.2.1. Dew Point -- 5.2.2. Dew-Point Depression -- 5.2.3. Why Dehydrate? -- 5.3. Water of Gas -- 5.3.1. Introduction -- 5.3.2. Partial Pressure and Fugacity -- 5.3.3. Empirical Plots -- 5.3.4. Sour Gas Correlations -- 5.3.4.1. Weighted-Average Method -- 5.3.4.2. Sharma Correlation -- 5.3.4.3. SRK Sour Gas Correlation -- 5.3.5. Effect of Nitrogen and Heavy Ends -- 5.3.6. Applications -- 5.3.7. Amount of Water Condensed -- 5.4. Gas Hydrates -- 5.4.1. What Are Gas Hydrates? -- 5.4.2. Why Is Hydrate Control Necessary? -- 5.4.3. What Conditions Are Necessary to Promote Hydrate Formation? -- 5.4.4. How Do We Prevent or Control Hydrates? -- 5.5. Prediction of Operating Temperature and Pressure -- 5.5.1. Wellhead Conditions -- 5.5.2. Flowline Conditions -- 5.5.3. Calculation of Temperature and Pressure at the Wellhead -- 5.5.4. Calculation of Flowline Downstream Temperature -- 5.6. Temperature Drop Determination -- 5.6.1. Overview -- 5.6.2. Temperature Drop Correlation (Figure5.7) -- 5.7. Hydrate Prediction Correlations -- 5.7.1. Overview -- 5.7.2. Pressure-Temperature Curves -- 5.7.3. Equations of State Calculations -- 5.7.4. Vapor-Solid Equilibrium Constants -- 5.7.5. Pressure-Temperature Curves (Figure5.13) -- 5.8. Hydrate Prevention -- 5.8.1. Overview -- 5.8.2. Adding Heat -- 5.8.3. Temperature Control -- 5.8.3.1. Indirect Heaters -- 5.8.3.1.1. Overview -- 5.8.3.1.2. Wellhead Heater Description (Figures5.14 and 5.15) -- 5.8.3.1.2.1. Safety Shut-Down ``Wing´´ Valve -- 5.8.3.1.2.2. High-Pressure Flowline -- 5.8.3.1.2.3. Expansion Loop.5.8.3.1.2.4. Long-Nose Heater Choke (Figure5.15).Updated and better than ever, Design of Gas-Handling Systems and Facilities, 3rd Edition includes greatly expanded chapters on gas-liquid separation, gas sweetening, gas liquefaction, and gas dehydration —information necessary and critical to production and process engineers and designers. Natural gas is at the forefront of today's energy needs, and this book walks you through the equipment and processes used in gas-handling operations, including conditioning and processing, to help you effectively design and manage your gas production facility. Taking a logical approach from theory into practical application, Design of Gas-Handling Systems and Facilities, 3rd Edition contains many supporting equations as well as detailed tables and charts to facilite process design. Based on real-world case studies and experience, this must-have training guide is a reference that no natural gas practitioner and engineer should be without. Packed with charts, tables, and diagrams Features the prerequisite ASME and API codes Updated chapters on gas-liquid separation, gas sweetening, gas liquefaction and gas dehydrationDesign of gas-handling systems and facilitiesGas engineeringGas wellsEquipment and suppliesNatural gasEquipment and suppliesOil fieldsGas engineering.Gas wellsEquipment and supplies.Natural gasEquipment and supplies.Oil fields.665.7665.7Stewart Maurice858236UMIUMIBOOK9911006648203321Surface production operations1916048UNINA