01189nam a2200289 i 4500991001304739707536051108s2003 enk b 001 0 eng d0198527004b13352131-39ule_instDip.to Matematicaeng621.301511822AMS 78-02LC QC760.F32Fabrizio, Mauro42544Electromagnetism of continuous media :mathematical modelling and applications /Mauro Fabrizio and Angelo MorroOxford ;New York :Oxford University Press,2003xvii, 668 p. ;24 cmIncludes bibliographical references (p. [654]-664) and indexElectromagnetismElectric engineeringMathematical modelsMorro, Angeloauthorhttp://id.loc.gov/vocabulary/relators/aut40536.b1335213105-12-0608-11-05991001304739707536LE013 78-XX FAB11 (2003)12013000200835le013pE116.35-l- 01010.i1419163509-02-06Electromagnetism of continuous media1461719UNISALENTOle01308-11-05ma -engenk0002667nam 22005175 450 991030011730332120200705044616.03-319-92117-710.1007/978-3-319-92117-4(CKB)3810000000358848(DE-He213)978-3-319-92117-4(MiAaPQ)EBC5501045(PPN)229498108(EXLCZ)99381000000035884820180628d2018 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierStructurally Unstable Quadratic Vector Fields of Codimension One /by Joan C. Artés, Jaume Llibre, Alex C. Rezende1st ed. 2018.Cham :Springer International Publishing :Imprint: Birkhäuser,2018.1 online resource (VI, 267 p. 362 illus., 1 illus. in color.) 3-319-92116-9 Includes bibliographical references.Introduction -- Preliminary definitions -- Some preliminary tools -- A summary for the structurally stable quadratic vector fields -- Proof of Theorem 1.1(a) -- Proof of Theorem 1.1(b) -- Bibliography.Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors’ work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them. .Differential equationsDynamicsErgodic theoryOrdinary Differential Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12147Dynamical Systems and Ergodic Theoryhttps://scigraph.springernature.com/ontologies/product-market-codes/M1204XDifferential equations.Dynamics.Ergodic theory.Ordinary Differential Equations.Dynamical Systems and Ergodic Theory.515.352Artés Joan Cauthttp://id.loc.gov/vocabulary/relators/aut501630Llibre Jaumeauthttp://id.loc.gov/vocabulary/relators/autRezende Alex Cauthttp://id.loc.gov/vocabulary/relators/autBOOK9910300117303321Structurally Unstable Quadratic Vector Fields of Codimension One1963844UNINA