00984nam a22002531i 450099100108072970753620021216122450.0021117s1962 it a||||||||||||||||ita b12097160-39ule_instARCHE-018696ExLDip.to Filologia Ling. e Lett.itaA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l.856Settembrini, Luigi137980Lettere dall'ergastolo /Luigi Settembrini ; a cura di Mario ThemellyMilano :Feltrinelli,1962XXXVII, 743 p., [16] c. di tav. :ill. ;23 cmEpistolariSettembrini, LuigiLettere e carteggi.b1209716028-04-1701-04-03991001080729707536LE008 FL.M. I C 3412008000167851le008-E0.00-l- 00000.i1239891301-04-03Lettere dall'ergastolo139667UNISALENTOle00801-04-03ma -itait 0103923nam 22005895 450 991074696930332120250604142714.09783031346156303134615710.1007/978-3-031-34615-6(MiAaPQ)EBC30764558(Au-PeEL)EBL30764558(DE-He213)978-3-031-34615-6(PPN)27274011X(CKB)28443810400041(EXLCZ)992844381040004120230929d2023 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierSpectral Geometry and Inverse Scattering Theory /by Huaian Diao, Hongyu Liu1st ed. 2023.Cham :Springer Nature Switzerland :Imprint: Springer,2023.1 online resource (388 pages)Print version: Diao, Huaian Spectral Geometry and Inverse Scattering Theory Cham : Springer,c2023 9783031346149 Introduction. -Geometric structures of Laplacian eiegenfunctions -- Geometric structures of Maxwellian eigenfunctions -- Inverse obstacle and diffraction grating scattering problems -- Path argument for inverse acoustic and electromagnetic obstacle scattering problems -- Stability for inverse acoustic obstacle scattering problems. - Stability for inverse electromagnetic obstacle scattering problems -- Geometric structures of Helmholtz’s transmission eigenfunctions with general transmission conditions and applications -- Geometric structures of Maxwell’s transmission eigenfunctions and applications -- Geometric structures of Lame’s transmission eigenfunctions with general ´ transmission conditions and applications -- Geometric properties of Helmholtz’s transmission eigenfunctions induced by curvatures and applications. - Stable determination of an acoustic medium scatterer by a single far-field pattern -- Stable determination of an elastic medium scatterer by a single far-field measurement and beyond.Inverse scattering problems are a vital subject for both theoretical and experimental studies and remain an active field of research in applied mathematics. This book provides a detailed presentation of typical setup of inverse scattering problems for time-harmonic acoustic, electromagnetic and elastic waves. Moreover, it provides systematical and in-depth discussion on an important class of geometrical inverse scattering problems, where the inverse problem aims at recovering the shape and location of a scatterer independent of its medium properties. Readers of this book will be exposed to a unified framework for analyzing a variety of geometrical inverse scattering problems from a spectral geometric perspective. This book contains both overviews of classical results and update-to-date information on latest developments from both a practical and theoretical point of view. It can be used as an advanced graduate textbook in universities or as a referencesource for researchers in acquiring the state-of-the-art results in inverse scattering theory and their potential applications. .GeometryDifferential equationsGeometryDifferential EquationsGeometria espectralthubTransformacions (Matemàtica)thubLlibres electrònicsthubGeometry.Differential equations.Geometry.Differential Equations.Geometria espectralTransformacions (Matemàtica)516Diao Huaian1431190Liu Hongyu1381763MiAaPQMiAaPQMiAaPQBOOK9910746969303321Spectral Geometry and Inverse Scattering Theory3573307UNINA