01142nam a2200253 i 4500991000272609707536090604s2008 it b 001 0 ita db13834472-39ule_instDip.to MatematicaengAMS 60J60AMS 76F25AMS 82C31Moccia, Salvatore471438Modelli stocastici per il trasporto lagrangiano in turbolenza. Tesi di laurea in fisica matematica /laureando Salvatore Moccia; relat. Francesco Paparella; corr. Paolo ParadisiLecce :Università del Salento. Facoltà di Scienze MM. FF. NN. Corso di laurea in Matematica,a.a. 2007-0859 p. ;29 cmPaparella, FrancescoParadisi, Paolo.b1383447202-04-1404-06-09991000272609707536LE013 TES 2007/08 MOC112013000210278le013gE15.00-no 00000.i1497693604-06-09Modelli stocastici per il trasporto lagrangiano in turbolenza. Tesi di laurea in fisica matematica233378UNISALENTOle01304-06-09ma -itait 0003722oam 2200469 450 991080948670332120190911112729.0981-4452-36-X(OCoLC)844311148(MiFhGG)GVRL8RAZ(EXLCZ)99267000000037249120140422h20132013 uy 0engurun|---uuuuatxtccrThree classes of nonlinear stochastic partial differential equations /Jie Xiong, University of Macau, China & The University of Tennessee, Knoxville, USASingapore World Scientific Pub. Co.2013New Jersey :World Scientific,[2013]�20131 online resource (xi, 164 pages) illustrationsGale eBooksDescription based upon print version of record.981-4452-35-1 Includes bibliographical references and index.Preface; Contents; 1. Introduction to Superprocesses; 1.1 Branching particle system; 1.2 The log-Laplace equation; 1.3 The moment duality; 1.4 The SPDE for the density; 1.5 The SPDE for the distribution; 1.6 Historical remarks; 2. Superprocesses in Random Environments; 2.1 Introduction and main result; 2.2 The moment duality; 2.3 Conditional martingale problem; 2.4 Historical remarks; 3. Linear SPDE; 3.1 An equation on measure space; 3.2 A duality representation; 3.3 Two estimates; 3.4 Historical remarks; 4. Particle Representations for a Class of Nonlinear SPDEs; 4.1 Introduction4.2 Solution for the system4.3 A nonlinear SPDE; 4.4 Historical remarks; 5. Stochastic Log-Laplace Equation; 5.1 Introduction; 5.2 Approximation and two estimates; 5.3 Existence and uniqueness; 5.4 Conditional log-Laplace transform; 5.5 Historical remarks; 6. SPDEs for Density Fields of the Superprocesses in Random Environment; 6.1 Introduction; 6.2 Derivation of SPDE; 6.3 A convolution representation; 6.4 An estimate in spatial increment; 6.5 Estimates in time increment; 6.6 Historical remarks; 7. Backward Doubly Stochastic Differential Equations; 7.1 Introduction and basic definitions7.2 Ito-Pardoux-Peng formula7.3 Uniqueness of solution; 7.4 Historical remarks; 8. From SPDE to BSDE; 8.1 The SPDE for the distribution; 8.2 Existence of solution to SPDE; 8.3 From BSDE to SPDE; 8.4 Uniqueness for SPDE; 8.5 Historical remarks; Appendix Some Auxiliary Results; A.1 Martingale representation theorems; A.2 Weak convergence; A.3 Relation among strong existence, weak existence and pathwise uniqueness; Bibliography; IndexThe study of measure-valued processes in random environments has seen some intensive research activities in recent years whereby interesting nonlinear stochastic partial differential equations (SPDEs) were derived. Due to the nonlinearity and the non-Lipschitz continuity of their coefficients, new techniques and concepts have recently been developed for the study of such SPDEs. These include the conditional Laplace transform technique, the conditional mild solution, and the bridge between SPDEs and some kind of backward stochastic differential equations. This volume provides an introduction toStochastic partial differential equationsDifferential equations, NonlinearStochastic partial differential equations.Differential equations, Nonlinear.515.353Xiong Jie736517MiFhGGMiFhGGBOOK9910809486703321Three classes of nonlinear stochastic partial differential equations3940099UNINA01566nam0 2200361 i 450 RAV017168520251003044326.020130827d1991 ||||0itac50 baitaitz01i xxxe z01nz01ncRDAcarrierCrisi del marxismo e problemi globalia cura di Giuseppe Maccaroniscritti di M. Alcaro ... [et al.]NapoliCUEN[1991]141 p.24 cmMARXISMOSAGGIFIRMILC000497IMARXISMOCrisiFIRRAVC008835I320.532COMUNISMO23335.4SISTEMI MARXIANI (MARXISMO)19Alcaro, MarioCFIV009091Maccaroni, GiuseppeRAVV070356ITIT-00000020130827IT-BN0095 IT-SA0251 IT-NA0261 IT-NA0666 NAP 82CAC $NAP GVF. MODERNO$NAP 01POZZO LIB.Vi sono collocati fondi di economia, periodici di ingegneria e scienze, periodici di economia e statistica e altri fondi comprendenti documenti di economia pervenuti in dono. NAP FTST. CIV. $RAV0171685Biblioteca Centralizzata di Ateneo1 v. 01POZZO LIB.ECON MON 7089 0101 0700202835E VMA 1 v. ( Precedente collocazione 20 Ec 293B 2022072820220728 01 82 FT GVCrisi del marxismo e problemi globali2902106UNISANNIO