00669nam a2200181Ia 4500991000224049707536220516s9999||||xx |||||||||||||| ||und||b14443247-39ule_instBibl. Dip.le Aggr. Beni Culturali - Sez. Beni CulturaliitaChiappini, Rudy459050Francisco Goya /Rudy ChiappiniMilano :Electa,1996.b1444324719-05-2219-05-22991000224049707536LE001 Fondo Ricci 02520le001 E17.57 no 00000.i1601629419-05-22Francisco Goya2840140UNISALENTOle00119-05-22ma -undxx 0104493nam 22006855 450 991029976540332120200705052440.01-4939-2830-910.1007/978-1-4939-2830-9(CKB)3710000000467519(EBL)4178101(SSID)ssj0001546517(PQKBManifestationID)16141134(PQKBTitleCode)TC0001546517(PQKBWorkID)14796016(PQKB)10652787(DE-He213)978-1-4939-2830-9(MiAaPQ)EBC4178101(PPN)188459081(EXLCZ)99371000000046751920150827d2015 u| 0engur|n|---|||||txtccrCalabi-Yau Varieties: Arithmetic, Geometry and Physics Lecture Notes on Concentrated Graduate Courses /edited by Radu Laza, Matthias Schütt, Noriko Yui1st ed. 2015.New York, NY :Springer New York :Imprint: Springer,2015.1 online resource (542 p.)Fields Institute Monographs,1069-5273 ;34Description based upon print version of record.1-4939-2829-5 Includes bibliographical references at the end of each chapters and index.The Geometry and Moduli of K3 Surfaces (A. Harder, A. Thompson) -- Picard Ranks of K3 Surfaces of BHK Type (T. Kelly) -- Reflexive Polytopes and Lattice-Polarized K3 Surfaces (U. Whitcher) -- An Introduction to Hodge Theory (S.A. Filippini, H. Ruddat, A. Thompson) -- Introduction to Nonabelian Hodge Theory (A. Garcia-Raboso, S. Rayan) -- Algebraic and Arithmetic Properties of Period Maps (M. Kerr) -- Mirror Symmetry in Physics (C. Quigley) -- Introduction to Gromov–Witten Theory (S. Rose).- Introduction to Donaldson–Thomas and Stable Pair Invariants (M. van Garrel).- Donaldson–Thomas Invariants and Wall-Crossing Formulas (Y. Zhu).- Enumerative Aspects of the Gross–Siebert Program (M. van Garrel, D.P. Overholser, H. Ruddat).- Introduction to Modular Forms (S. Rose).- Lectures on Holomorphic Anomaly Equations (A. Kanazawa, J. Zhou) -- Polynomial Structure of Topological Partition Functions (J. Zhou).- Introduction to Arithmetic Mirror Symmetry (A. Perunicic).This volume presents a lively introduction to the rapidly developing and vast research areas surrounding Calabi–Yau varieties and string theory. With its coverage of the various perspectives of a wide area of topics such as Hodge theory, Gross–Siebert program, moduli problems, toric approach, and arithmetic aspects, the book gives a comprehensive overview of the current streams of mathematical research in the area. The contributions in this book are based on lectures that took place during workshops with the following thematic titles: “Modular Forms Around String Theory,” “Enumerative Geometry and Calabi–Yau Varieties,” “Physics Around Mirror Symmetry,” “Hodge Theory in String Theory.” The book is ideal for graduate students and researchers learning about Calabi–Yau varieties as well as physics students and string theorists who wish to learn the mathematics behind these varieties.Fields Institute Monographs,1069-5273 ;34Number theoryGeometry, AlgebraicFunctions of complex variablesNumber Theoryhttps://scigraph.springernature.com/ontologies/product-market-codes/M25001Algebraic Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M11019Several Complex Variables and Analytic Spaceshttps://scigraph.springernature.com/ontologies/product-market-codes/M12198Number theory.Geometry, Algebraic.Functions of complex variables.Number Theory.Algebraic Geometry.Several Complex Variables and Analytic Spaces.516.35Laza Raduedthttp://id.loc.gov/vocabulary/relators/edtSchütt Matthiasedthttp://id.loc.gov/vocabulary/relators/edtYui Norikoedthttp://id.loc.gov/vocabulary/relators/edtMiAaPQMiAaPQMiAaPQBOOK9910299765403321Calabi-Yau varieties: arithmetic, geometry and physics2440519UNINA