01171nam a2200265 i 450099100007403970753620020503113629.0981007s1982 it ||| | ita b10024426-39ule_instocm00000088ExLDip.to Beni Culturaliita937.7Convegno di studi sulla Magna Grecia <21. ; 1981 ; Taranto>391311Megale Hellas :nome e immagine : atti del ventunesimo Convegno di studi sulla Magna Grecia : Taranto, 2-5 ottobre 1981Taranto :Istituto per la storia e l'archeologia della Magna Grecia <Taranto>,1982427 p., [40] c. di tav. :ill. ;25 cmCongressiTaranto1981Magna GreciaCongressi1981.b1002442605-06-0731-05-02991000074039707536LE001 M I 2112001000195176le001-E0.00-l- 00000.i1002777431-05-02LE01612016000002058le016nE40.00-no 00000.i1447832805-06-07Megale Hellas84980UNISALENTOle001le01601-01-98ma -engit 0103727nam 22006015 450 991073146230332120240619121706.03-031-27304-410.1007/978-3-031-27304-9(MiAaPQ)EBC30591730(Au-PeEL)EBL30591730(DE-He213)978-3-031-27304-9(PPN)272261408(CKB)26895859000041(EXLCZ)992689585900004120230610d2023 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierPhilosophy of Mathematics in Antiquity and in Modern Times /by Ulrich Felgner1st ed. 2023.Cham :Springer International Publishing :Imprint: Birkhäuser,2023.1 online resource (314 pages)Science Networks. Historical Studies,2296-6080 ;62Print version: Felgner, Ulrich Philosophy of Mathematics in Antiquity and in Modern Times Cham : Springer International Publishing AG,c2023 9783031273032 The concept of mathematics -- Plato's philosophy of mathematics -- The Aristotelian conception of mathematics -- The axiomatic method of Euclid -- Finitism in Greek mathematics -- The paradoxes of Zeno -- On certainty in mathematics -- The Cartesian nativism, the Prometheus myth, Augustinian illuminism, and Cartesian rationalism -- John Locke's thoughts on mathematics -- Rationalism -- Empiricism in mathematics -- Immanuel Kant's conception of mathematics -- Psychologism in mathematics -- Logicism -- The concept of "set" -- Contemporary Platonism -- The problem of non-constructive proofs of existence -- The formal and the contentual position -- Dedekind and the emergence of structuralism -- Hilbert's critical philosophy -- Epilogue -- Index of names -- Index of subjects -- Index of abbreviations.»Philosophy of Mathematics« is understood, in this book, as an effort to clarify such questions that mathematics itself raises but cannot answer with its own methods. These include, for example, questions about the ontological status of mathematical objects (e.g., what is the nature of mathematical objects?) and the epistemological status of mathematical theorems (e.g., from what sources do we draw when we prove mathematical theorems?). The answers given by Plato, Aristotle, Euclid, Descartes, Locke, Leibniz, Kant, Cantor, Frege, Dedekind, Hilbert and others will be studied in detail. This will lead us to deep insights, not only into the history of mathematics, but also into the conception of mathematics as it is commonly held in the present time. The book is a translation from the German, however revised and considerably expanded. Various chapters have been completely rewritten.Science Networks. Historical Studies,2296-6080 ;62Logic, Symbolic and mathematicalGeometryMathematical Logic and FoundationsGeometryFilosofia de la matemàticathubHistòria de la matemàticathubLlibres electrònicsthubLogic, Symbolic and mathematical.Geometry.Mathematical Logic and Foundations.Geometry.Filosofia de la matemàticaHistòria de la matemàtica510.1510.1Felgner Ulrich56790MiAaPQMiAaPQMiAaPQBOOK9910731462303321Philosophy of Mathematics in Antiquity and in Modern Times3395580UNINA