03426nam 22006135 450 991043816000332120200630155842.03-319-01288-610.1007/978-3-319-01288-9(CKB)3710000000024335(SSID)ssj0001049498(PQKBManifestationID)11678732(PQKBTitleCode)TC0001049498(PQKBWorkID)11018930(PQKB)10424059(DE-He213)978-3-319-01288-9(MiAaPQ)EBC3107016(PPN)176103929(EXLCZ)99371000000002433520131001d2013 u| 0engurnn|008mamaatxtccrInvariance Entropy for Deterministic Control Systems An Introduction /by Christoph Kawan1st ed. 2013.Cham :Springer International Publishing :Imprint: Springer,2013.1 online resource (XXII, 270 p. 2 illus., 1 illus. in color.) Lecture Notes in Mathematics,0075-8434 ;2089Bibliographic Level Mode of Issuance: Monograph3-319-01287-8 Basic Properties of Control Systems -- Introduction to Invariance Entropy -- Linear and Bilinear Systems -- General Estimates -- Controllability, Lyapunov Exponents, and Upper Bounds -- Escape Rates and Lower Bounds -- Examples -- Notation -- Bibliography -- Index.This monograph provides an introduction to the concept of invariance entropy, the central motivation of which lies in the need to deal with communication constraints in networked control systems. For the simplest possible network topology, consisting of one controller and one dynamical system connected by a digital channel, invariance entropy provides a measure for the smallest data rate above which it is possible to render a given subset of the state space invariant by means of a symbolic coder-controller pair. This concept is essentially equivalent to the notion of topological feedback entropy introduced by Nair, Evans, Mareels and Moran (Topological feedback entropy and nonlinear stabilization. IEEE Trans. Automat. Control 49 (2004), 1585–1597). The book presents the foundations of a theory which aims at finding expressions for invariance entropy in terms of dynamical quantities such as Lyapunov exponents. While both discrete-time and continuous-time systems are treated, the emphasis lies on systems given by differential equations.Lecture Notes in Mathematics,0075-8434 ;2089DynamicsErgodic theorySystem theoryDynamical Systems and Ergodic Theoryhttps://scigraph.springernature.com/ontologies/product-market-codes/M1204XSystems Theory, Controlhttps://scigraph.springernature.com/ontologies/product-market-codes/M13070Dynamics.Ergodic theory.System theory.Dynamical Systems and Ergodic Theory.Systems Theory, Control.515.42Kawan Christophauthttp://id.loc.gov/vocabulary/relators/aut479678MiAaPQMiAaPQMiAaPQBOOK9910438160003321Invariance entropy for deterministic control systems258671UNINA01624oas 2200601 a 450 99668158160331620251105213014.01953-8375(CONSER) 2012254055(CKB)41276034800041(DE-599)ZDB2390993-6(OCoLC)219835148(EXLCZ)994127603480004120080114a20069999 ua freurcnu||||||||txtrdacontentcrdamediacrrdacarrierSociétés et jeunesses en difficulté[Paris] LʹEcole nationale de protection judiciaire de la jeunesse"Revue pluridisciplinaire de recherche."Some issues have a distinctive title.Soc. jeun. diffic.At-risk youthPeriodicalsJeunes difficilesPériodiquesAt-risk youthfast(OCoLC)fst01077938Periodicals.fastAt-risk youthJeunes difficilesAt-risk youth.École nationale de protection judiciaire de la jeunesse (France)CaSSUUABOCLCQCUDNTEOCLCQCUSOCLCFOCLCQVT2OCLCOOCLCAOCLOCLCQUEJOCLCLOCLCQJOURNAL996681581603316Sociétés et jeunesses en difficulté2048158UNISA