04320oam 2200661 c 450 99658204420331620220221094418.03-8394-5212-09783839452127(CKB)4940000000613254(MiAaPQ)EBC6733042(Au-PeEL)EBL6733042(OCoLC)1272995535(transcript Verlag)9783839452127(DE-B1597)546311(OCoLC)1280944812(DE-B1597)9783839452127(EXLCZ)99494000000061325420220221d2021 uy 0gerurcnu||||||||txtrdacontentcrdamediacrrdacarrierSkizzen, Romane, KarikaturenPopuläre Genres als soziographische Wissensformate im 19. JahrhundertChristiane Schwab1st ed.Bielefeldtranscript Verlag2021223 SeitenWissensKulturen / Knowledge Cultures13-8376-5212-2 Cover -- Inhalt -- Vorwort -- Populäre Genres als soziographische Wissensformate im 19. Jahrhundert -- Das Carte de Visite-Porträt und die frühe Volkskunde -- Adapting Parisian physiologies to the Streets of London: -- L'Illustration oder »bloß« Illustration? -- The china and the ranchero -- Die Ordnung der Gesellschaft -- The Coexistence of Traditional and Modern Medicine in Costa Rican Sketches of Manners -- Das Volk im Bilderbogen -- Autorinnen und Autoren.Seit Beginn des 19. Jahrhunderts förderte ein wachsendes Bedürfnis nach gesellschaftlicher Selbstbeobachtung die Entstehung und Popularisierung vielgestaltiger soziographischer Formate. Skizzen, Reiseberichte, Sozialromane und Karikaturen feierten auf einem zunehmend kommerzialisierten Kunst- und Literaturmarkt beachtliche Erfolge und nahmen Orte, Typen, Gewohnheiten und Moden der sich ausdifferenzierenden sozialen Welt unter die Lupe. Die Beiträge des Bandes untersuchen, wie ethnographisch-soziologisches Wissen in verschiedenen medialen Formaten hergestellt wurde - und betrachten diese als Agenten eines sich formierenden sozialwissenschaftlichen Diskurses in Europa und darüber hinaus.WissensKulturen / Knowledge Cultures19. Jahrhundert; Zeitschriften; Geschichte der Sozialwissenschaften; Wissensgeschichte; Skizze; Reisebericht; Sozialroman; Karikatur; Literatur; Selbstbeobachtung; Diskurs; Kultur; Kunst; Kulturanthropologie; Wissenssoziologie; Kunstgeschichte des 19. Jahrhunderts Kulturgeschichte; Allgemeine Literaturwissenschaft Cultural Studies; Kunstgeschichte des 19. Jahrhunderts; Kulturgeschichte; 19th Century; Magazines; History of Knowledge; Travelogue; Social Novel; Caricature; Literature; Self-monitoring; Discourse; Culture; Art; Cultural Anthropology; Sociology of Knowledge; Art History of the 19th Century; Cultural History;Art History of the 19th Century.Art.Caricature.Cultural Anthropology.Cultural History.Culture.Discourse.History of Knowledge.Literature.Magazines.Self-monitoring.Social Novel.Sociology of Knowledge.Travelogue.19. Jahrhundert; Zeitschriften; Geschichte der Sozialwissenschaften; Wissensgeschichte; Skizze; Reisebericht; Sozialroman; Karikatur; Literatur; Selbstbeobachtung; Diskurs; Kultur; Kunst; Kulturanthropologie; Wissenssoziologie; Kunstgeschichte des 19. Jahrhunderts Kulturgeschichte; Allgemeine Literaturwissenschaft Cultural Studies; Kunstgeschichte des 19. Jahrhunderts; Kulturgeschichte; 19th Century; Magazines; History of Knowledge; Travelogue; Social Novel; Caricature; Literature; Self-monitoring; Discourse; Culture; Art; Cultural Anthropology; Sociology of Knowledge; Art History of the 19th Century; Cultural History;305.8Schwab ChristianeLudwig-Maximilians-Universität München, DeutschlandedtMiAaPQMiAaPQMiAaPQBOOK996582044203316Skizzen, Romane, Karikaturen4128370UNISA04476nam 22006855 450 991091981560332120251113180006.09783031768347303176834510.1007/978-3-031-76834-7(CKB)37115973200041(DE-He213)978-3-031-76834-7(MiAaPQ)EBC31870179(Au-PeEL)EBL31870179(EXLCZ)993711597320004120241229d2024 u| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierLectures on Optimal Transport /by Luigi Ambrosio, Elia Brué, Daniele Semola2nd ed. 2024.Cham :Springer Nature Switzerland :Imprint: Springer,2024.1 online resource (XI, 260 p. 2 illus., 1 illus. in color.)La Matematica per il 3+2,2038-5757 ;1699783031768330 3031768337 - 1. Lecture I. Preliminary notions and the Monge problem -- 2. Lecture II. The Kantorovich problem -- 3. Lecture III. The Kantorovich - Rubinstein duality -- 4. Lecture IV. Necessary and sufficient optimality conditions -- 5. Lecture V. Existence of optimal maps and applications -- 6. Lecture VI. A proof of the isoperimetric inequality and stability in Optimal Transport -- 7. Lecture VII. The Monge-Ampére equation and Optimal Transport on Riemannian manifolds -- 8. Lecture VIII. The metric side of Optimal Transport -- 9. Lecture IX. Analysis on metric spaces and the dynamic formulation of Optimal Transport -- 10. Lecture X.Wasserstein geodesics, nonbranching and curvature -- 11. Lecture XI. Gradient flows: an introduction -- 12. Lecture XII. Gradient flows: the Brézis-Komura theorem -- 13. Lecture XIII. Examples of gradient flows in PDEs -- 14. Lecture XIV. Gradient flows: the EDE and EDI formulations -- 15. Lecture XV. Semicontinuity and convexity of energies in the Wasserstein space -- 16. Lecture XVI. The Continuity Equation and the Hopf-Lax semigroup -- 17. Lecture XVII. The Benamou-Brenier formula -- 18. Lecture XVIII. An introduction to Otto’s calculus -- 19. Lecture XIX. Heat flow, Optimal Transport and Ricci curvature.This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations. This is the second edition of the book, first published in 2018. It includes refinement of proofs, an updated bibliography and a more detailed discussion of minmax principles, with the aim of giving two fully self-contained proofs of Kantorovich duality.La Matematica per il 3+2,2038-5757 ;169Mathematical analysisMathematical optimizationCalculus of variationsMeasure theoryMathematicsAnalysisCalculus of Variations and OptimizationMeasure and IntegrationMathematicsMathematical analysis.Mathematical optimization.Calculus of variations.Measure theory.Mathematics.Analysis.Calculus of Variations and Optimization.Measure and Integration.Mathematics.515Ambrosio Luigiauthttp://id.loc.gov/vocabulary/relators/aut44009Brué Eliaauthttp://id.loc.gov/vocabulary/relators/autSemola Danieleauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK9910919815603321Lectures on Optimal Transport2175022UNINA