01032nam0-22003251--450-99000886449040332120090610130316.0000886449FED01000886449(Aleph)000886449FED0100088644920090610d1916----km-y0itay50------baitaITy-------001yyGiacomo Veneziancommemorazione letta nell'Aula Magna della R. Università di Padova il 16 gennaio 1916dal prof. Vittorio PolaccoMilanoVallardi191619 p.27 cmEstr. da: Rivista del Diritto Commerciale, 14 (1916), n.1, parte 1945.091309219itaPolacco,Vittorio<1859-1926>227941ITUNINARICAUNIMARCBK990008864490403321BUSTA 24 (1) 124963FGBCBUSTA 24 (1) 14365FGBCBUSTA 24 (1) 134962FGBCFGBCGiacomo Venezian803933UNINA04748nam 2200637 a 450 991014341600332120190822110616.01-280-41143-097866104114360-470-32705-70-471-78008-10-471-78007-3(CKB)1000000000354665(EBL)257071(OCoLC)71431446(SSID)ssj0000110838(PQKBManifestationID)11142744(PQKBTitleCode)TC0000110838(PQKBWorkID)10065552(PQKB)11333831(MiAaPQ)EBC257071(EXLCZ)99100000000035466520050725d2006 uy 0engur|n|---|||||txtrdacontentcrdamediacrrdacarrierBeyond Born-Oppenheimer[electronic resource] electronic non-adiabatic coupling terms and conical intersections /by Michael BaerHoboken, N.J. Wileyc20061 online resource (254 p.)Includes index0-471-77891-5 BEYOND BORN-OPPENHEIMER; CONTENTS; PREFACE; ABBREVIATIONS; 1 MATHEMATICAL INTRODUCTION; 1.1 Hilbert Space; 1.1.1 Eigenfunction and Electronic Nonadiabatic Coupling Term; 1.1.2 Abelian and Non-Abelian Curl Equations; 1.1.3 Abelian and Non-Abelian Divergence Equations; 1.2 Hilbert Subspace; 1.3 Vectorial First-Order Differential Equation and Line Integral; 1.3.1 Vectorial First-Order Differential Equation; 1.3.1.1 Study of Abelian Case; 1.3.1.2 Study of Non-Abelian Case; 1.3.1.3 Orthogonality; 1.3.2 Integral Equation; 1.3.2.1 Integral Equation along an Open Contour1.3.2.2 Integral Equation along a Closed Contour1.3.3 Solution of Differential Vector Equation; 1.4 Summary and Conclusions; Problem; References; 2 BORN-OPPENHEIMER APPROACH: DIABATIZATION AND TOPOLOGICAL MATRIX; 2.1 Time-Independent Treatment; 2.1.1 Adiabatic Representation; 2.1.2 Diabatic Representation; 2.1.3 Adiabatic-to-Diabatic Transformation; 2.1.3.1 Transformation for Electronic Basis Sets; 2.1.3.2 Transformation for Nuclear Wavefunctions; 2.1.3.3 Implications Due to Adiabatic-to-Diabatic Transformation; 2.1.3.4 Final Comments; 2.2 Application of Complex Eigenfunctions2.2.1 Introducing Time-Independent Phase Factors2.2.1.1 Adiabatic Schrödinger Equation; 2.2.1.2 Adiabatic-to-Diabatic Transformation; 2.2.2 Introducing Time-Dependent Phase Factors; 2.3 Time-Dependent Treatment; 2.3.1 Time-Dependent Perturbative Approach; 2.3.2 Time-Dependent Nonperturbative Approach; 2.3.2.1 Adiabatic Time-Dependent Electronic Basis Set; 2.3.2.2 Adiabatic Time-Dependent Nuclear Schrödinger Equation; 2.3.2.3 Time-Dependent Adiabatic-to-Diabatic Transformation; 2.3.3 Summary; Problem; 2A Appendixes; 2A.1 Dressed Nonadiabatic Coupling Matrix2A.2 Analyticity of Adiabatic-to-Diabatic Transformation Matrix à in Spacetime ConfigurationReferences; 3 MODEL STUDIES; 3.1 Treatment of Analytical Models; 3.1.1 Two-State Systems; 3.1.1.1 Adiabatic-to-Diabatic Transformation Matrix; 3.1.1.2 Topological (D) Matrix; 3.1.1.3 The Diabatic Potential Matrix; 3.1.2 Three-State Systems; 3.1.2.1 Adiabatic-to-Diabatic Transformation Matrix; 3.1.2.2 Topological Matrix; 3.1.3 Four-State Systems; 3.1.3.1 Adiabatic-to-Diabatic Transformation Matrix; 3.1.3.2 Topological Matrix; 3.1.4 Comments Related to General Case4.3 Quantization of Nonadiabatic Coupling Matrix: Study of Ab Initio Molecular SystemsINTRODUCING A POWERFUL APPROACH TO DEVELOPING RELIABLE QUANTUM MECHANICAL TREATMENTS OF A LARGE VARIETY OF PROCESSES IN MOLECULAR SYSTEMS.The Born-Oppenheimer approximation has been fundamental to calculation in molecular spectroscopy and molecular dynamics since the early days of quantum mechanics. This is despite well-established fact that it is often not valid due to conical intersections that give rise to strong nonadiabatic effects caused by singular nonadiabatic coupling terms (NACTs). In Beyond Born-Oppenheimer, Michael Baer, a leading authority on molecular scattering theory anMolecular dynamicsMathematicsBorn-Oppenheimer approximationAdiabatic invariantsElectronic booksMolecular dynamicsMathematics.Born-Oppenheimer approximation.Adiabatic invariants.539.758541/.28Baer M(Michael),1937-848737MiAaPQMiAaPQMiAaPQBOOK9910143416003321Beyond Born-Oppenheimer1901119UNINA02519nam 22005775 450 99658016130331620240130111714.03-8394-6448-X10.1515/9783839464489(CKB)30365702400041(DE-B1597)634598(DE-B1597)9783839464489(EXLCZ)993036570240004120240130h20242023 fg gerur|||||||||||txtrdacontentcrdamediacrrdacarrierDiversität und Darstellung Zugehörigkeit und Ausgrenzung im Literaturmuseum und in der Literaturwissenschaft /hrsg. von Magdalena Hülscher, Sebastian SchönbeckBielefeld : transcript Verlag, [2024]20231 online resource (320 p.)Edition Museum ;68Die Analyse und Vermittlung von literarischen Texten des frühen 19. Jahrhunderts birgt Potenziale im Hinblick auf den Umgang mit Diversität, Zugehörigkeit und Ausgrenzung. Die Beiträger*innen fragen danach, wie kulturelle Vielfalt in der musealen sowie der literaturwissenschaftlichen Praxis zu kritischen Reflexionen und zu neuen Perspektiven auf kanonisierte Gegenstände führt. Im Zentrum steht dabei das Interesse an den Optionen der Darstellung von Diversität im Literaturmuseum und in der Literaturwissenschaft. Der Band führt theoretische und praktische Zugriffe zusammen und arbeitet somit auch an einer methodisch-theoretischen Vielfalt.LITERARY CRITICISM / GeneralbisacshBelonging.Canon.Curating.Exclusion.Exhibition.Literary Museum.Literary Studies.Literature.Museum Education.Museum.Postcolonialism.Practical Museography.Presentation.Romanticism.Theory of Literature.LITERARY CRITICISM / General.Hülscher Magdalena, edthttp://id.loc.gov/vocabulary/relators/edtSchönbeck Sebastian, edthttp://id.loc.gov/vocabulary/relators/edt360ø Fonds für Kulturen der neuen Stadtgesellschaftfndhttp://id.loc.gov/vocabulary/relators/fndDE-B1597DE-B1597BOOK996580161303316Diversität und Darstellung3907448UNISA