01309cam2 22003011 450 SOBE0003954320140127093301.020140127h2002 |||||ita|0103 baitaIT<<2: >>Statistica inferenziale e analisi dei datiAnna Paola Ercolani, Alessandra Areni, Luigi LeoneBolognail MulinoC2002261 p.ill.22 cmItinerariPsicologia001LAEC000194732001 *Itinerari. Psicologia001E6002000158062001 Statistica per la psicologia ; [Vol.] I : Fondamenti di psicometria e statistica descrittiva ; [Vol.] II. : Statistica inferenziale e analisi dei dati / Anna Paola Ercolani. ; Alessandra Areni. ; Luigi LeoneErcolani, Anna PaolaA600200034474070124291Areni, AlessandraA600200034475070128127Leone, Luigi <1970->A600200034476070773791ITUNISOB20140127RICAUNISOBUNISOB150128291SOBE00039543M 102 Monografia moderna SBNM150001877-2SI128291rovitoUNISOBUNISOB20140127093308.020140127093357.0rovitoStatistica inferenziale e analisi dei dati1713275UNISOB10488nam 2200469 450 991048559710332120230629233234.03-030-74338-1(CKB)5590000000487603(MiAaPQ)EBC6644958(Au-PeEL)EBL6644958(OCoLC)1257667057(EXLCZ)99559000000048760320220206d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierModeling explosions and blast waves /K. Ramamurthi2nd ed.Cham, Switzerland :Springer,[2021]©20211 online resource (408 pages)3-030-74337-3 Intro -- Preface -- Contents -- About the Author -- 1 Basic Concepts and Introduction to Blast Waves and Explosions -- 1.1 Noise and Disruption of Objects in an Explosion -- 1.1.1 Sound Waves -- 1.1.2 Finite Amplitude Waves -- 1.1.3 Wave with a Steep Front -- 1.1.4 Shock Waves -- 1.1.5 Compression Disturbances Intensifying to a Shock Wave -- 1.1.6 Expansion Waves -- 1.1.7 Role of Compressibility of the Medium -- 1.1.8 Wave Propagation and Not Matter Propagation -- 1.1.9 Blast Wave and Disruption of Objects -- 1.2 Types of Explosions -- 1.2.1 Naturally Occurring Explosions -- 1.2.2 Intentional Explosions -- 1.2.3 Accidental Explosions: Hazard -- 1.3 Typical Examples of Accidental Explosions -- 1.3.1 Texas City Disaster (April 16, 1947) -- 1.3.2 Beirut Explosion (August 4, 2020) -- 1.3.3 Explosion of Fuel Tank of Aircraft During Flight -- 1.3.4 Largest Man-Made Explosion: Ural Mountains, June 4, 1989 -- 1.3.5 Fireball and Blast in the Explosion at Crescent City, Illinois: June 2, 1970 -- 1.3.6 Explosion in a Bakery at Turin Involving Dust -- 1.3.7 Explosion in a Copper Smelter at Flin Flon, Canada -- 1.3.8 World's Worst Industrial Disaster: Bhopal Gas Tragedy (December 2/3, 1984) -- 1.3.9 Nuclear Explosions: Chernobyl (April 26, 1986) and Fukushima (March 11, 2011) -- 1.4 Classification of Explosions -- 2 Blast Waves in Air -- 2.1 Ideal Blast Wave -- 2.1.1 Ideal Blast Trajectory from Dimensional Considerations -- 2.2 Modeling of Parameters Across A Constant Velocity Shock -- 2.2.1 Rankine-Hugoniot Equations -- 2.2.2 Rayleigh Line and Properties Across a Shock Wave of Given Velocity S -- 2.2.3 Properties Behind a Shock of Mach Number MS -- 2.3 Change of Properties in a Blast Wave -- 2.3.1 Concentration of Mass at the Wave Front -- 2.3.2 Deviation from Wave Phenomenon -- 2.3.3 Decay of Blast Waves -- 2.3.4 Characteristic Length of Energy Release.Explosion Length -- 2.4 Predictions for Overpressures -- 2.4.1 Cranz-Hopkinson Scaling Law for Overpressure -- 2.4.2 Overpressure from a Strong Blast Wave -- 2.4.3 Smaller Values of Overpressures -- 2.5 Non-idealities of Source Influencing Overpressure -- 2.6 Pressure Variations in a Blast Wave: Impulse -- 2.6.1 Arrival Time and Mach Number of The Blast Wave at a Distance L from the Source -- 2.6.2 Impulse -- 2.6.3 Cranz-Hopkinson Law for Scaling Impulse -- 2.7 Missiles, Shrapnels, and Fragments from Blast -- Gurney Constant -- 2.8 Salient Features of Blast Waves -- 3 Interaction of Blast Waves with Rigid and Non-rigid Bodies -- 3.1 Reflection of Shock Waves from Non-yielding Surfaces -- 3.1.1 Normal Reflection -- 3.1.2 Oblique Reflection -- 3.2 Reflection and Transmission of Shocks from Yielding Surfaces -- 3.2.1 Mechanical Impedance of Medium and Determination of Reflected and Transmitted Waves -- 3.2.2 Formation of Expansion Waves -- 3.2.3 Spallation -- 3.2.4 Crushing of Kidney Stones in Humans -- 3.3 Reflection of a Blast Wave from the Ground: Formation of Multiple Shocks and a Mushroom Cloud -- 3.3.1 Craters -- 3.4 Multiple Pressure Spikes from a Finite Volume Explosion -- 3.5 Blast Waves in Water -- 3.5.1 Underwater Explosions and Associated Blast Wave -- 3.5.2 Explosions over Surface of Water -- 3.6 Absorption of Blast Wave Energy in Layered Structures -- 3.7 Role of Overpressure and Impulse on Damage from Blast Waves -- 4 Energy Release and Rate of Energy Release -- 4.1 Energy Release -- 4.1.1 Heat of Formation -- 4.1.2 Chemical Reactions and Energy Release -- 4.1.3 Stoichiometry, Fuel-Rich and Fuel-Lean Compositions -- Equivalence Ratio -- 4.1.4 Energy Release in a Stoichiometric Mixture of Fuel Vapor and Air -- 4.1.5 Generalized Procedure for Determining Energy Release.4.1.6 Influence of Variations in the Temperature And Pressure of the Reactants on Energy Release -- 4.1.7 Energy Release for Fuel-Lean (&lt -- 1) And Fuel-Rich (&gt -- 1) Compositions -- 4.2 Rate of Energy Release -- 4.2.1 Concentration, Law of Mass Action, And Activation Energy -- 4.2.2 Arrhenius Rate Equation -- 4.2.3 Rate of Chemical Reactions and Rate of Energy Release -- 5 Thermal Theory of Explosions -- 5.1 Formulation of Theory -- 5.1.1 Lumped Mass Assumption -- 5.1.2 Variations of Heat Release and Heat Loss Rates -- 5.1.3 Stable Temperature and Ignition Temperature -- 5.1.4 Critical Temperature and Auto-ignition -- 5.1.5 Changes of Ambient Temperature -- 5.2 Critical Conditions and Preheat -- 5.3 Characteristic Times of Heat Generation and Heat Loss -- 5.3.1 Characteristics of Heat Release From Chemical Reaction -- 5.3.2 Characteristic Time for Energy Release -- 5.3.3 Characteristic Heat Loss Time -- 5.4 Conditions for Explosion to Occur -- 5.5 Ignition and Auto-ignition -- 5.6 Induction Times and Nature Of Chemical Reactions -- 5.7 Branched Chain Explosions in Closed Vessels -- 5.7.1 First Explosion Limit -- 5.7.2 Second Explosion Limit -- 5.7.3 Third or Upper Explosion Limit -- 5.8 Limitations of Lumped Mass Assumption -- 6 Propagation of Reaction Front: Detonation, Deflagration and Quasi-Detonation -- 6.1 Propagation of One-Dimensional Combustion Waves: Reaction Hugoniot and Rayleigh Line -- 6.2 Physically Realizable States on Reaction Hugoniot: Detonations and Deflagrations -- 6.2.1 Chapman-Jouguet (CJ) Points -- 6.2.2 Detonation Branch of Hugoniot -- 6.2.3 Deflagration Branch -- 6.2.4 Realizable Combustion Waves -- 6.3 Detonations -- 6.3.1 Detonation Velocity VCJ and Pressure pCJ at the CJ Point U -- 6.3.2 One Dimensional Structure of a Detonation -- 6.3.3 ZND Structure of a Detonation.6.3.4 Detonation Cell and Multi-headed Detonation Front -- 6.4 Deflagration and Burning Velocities -- 6.4.1 Burning Velocity and Flame Speed -- 6.4.2 Thickness of Flame -- 6.4.3 Laminar and Turbulent Burning Velocities -- 6.4.4 Turbulent Flame Brush -- 6.4.5 Pressure Changes Across a Flame -- 6.5 Fast Flame at Lower Chapman-Jouguet Point: Sub CJ or Quasi Detonation -- 6.5.1 Velocity and Pressure in a Quasi Detonation -- 6.6 Detonations and Flames: Destructive Influence -- 7 Formation of Flames and Detonations in Gaseous Explosives -- 7.1 Initiation of Flame -- 7.1.1 Divergence and Loss -- 7.1.2 Quenching of Flame -- 7.1.3 Minimum Ignition Energy -- 7.1.4 Limits of Flammability -- 7.1.5 MIE and Flammability Limits -- 7.1.6 Low-Pressure Flammability Limits -- 7.1.7 Influence of Initial Temperature on Flammability Limits -- 7.1.8 Flammability Limit for a Mixture of Gases -- 7.1.9 Upward and Downward Flammability Limits -- 7.2 Minimum Oxygen Concentration: Maximum Safe Oxygen Concentration -- 7.3 Flammability Limits of Vapors From Volatile Liquids -- 7.3.1 Formation of Flammable Vapor-Air Mixture from Volatile Liquids -- 7.3.2 Flash and Fire Point Temperatures -- 7.4 Initiation of Detonation: Detonation Kernel -- 7.4.1 Requirement of Strong Shock Wave -- 7.4.2 Requirement of a Minimum Kernel for Detonation -- 7.4.3 Detonation Kernel in Analogy to Flame Kernel: Energy Required -- 7.4.4 Limits of Detonation -- 7.5 Transition of Flame to Detonation -- 8 Condensed Phase Explosions -- 8.1 Hydrocarbon Fuels Constituting Condensed Phase Explosives -- 8.1.1 Single, Double, and Triple Bonds -- 8.1.2 Alkanes, Alkenes, Alkynes, and Alkadienes -- 8.1.3 Aromatic Structure: Benzene -- 8.1.4 General Classification of Hydrocarbons -- 8.2 Explosives from Hydrocarbons -- 8.2.1 Nitromethane, Nitroglycerine, and Nitroglycol from Aliphatic Hydrocarbons.8.2.2 Nitrocellulose from Cellulose -- 8.2.3 Penta Erythritol Tetra Nitrate (PETN) from Straight Chain Aliphatic Compound -- 8.2.4 RDX and HMX from Cyclo-Aliphatic Hydrocarbons -- 8.2.5 Trinitrotoluene (TNT) from Aromatic Benzene Ring -- 8.2.6 Picric Acid (PA) from Phenyl -- 8.2.7 Tetryl -- 8.2.8 TATB -- 8.3 Explosives with Radicals of Azide, Fulminate, Acetylide, and Stephnate with Metals -- 8.4 Inorganic Explosives: Black Powder -- 8.5 Characteristics of Explosive Compositions -- 8.5.1 Enhancing Oxygen Content by Addition of Oxygen-Rich Compounds: AN-NM Slurry, ANFO, Gelatine Dynamite -- 8.5.2 Reduction in Oxygen Content: Plastic Explosives -- 8.6 Volume of Gas Generated from Condensed Explosives: Explosion Severity, Pyrotechnic Compositions, Thermites -- 8.7 Deflagration and Detonation of Condensed Explosives -- 8.7.1 Deflagration in Confined and Unconfined Spaces -- 8.7.2 Detonation in Confined and Unconfined Spaces -- 8.7.3 Detonation and Heterogeneity of the Explosive -- 8.8 Parameters of Explosive Influencing Detonation -- Classification in Four Categories -- 8.9 High Values of Activation Energies -- 8.10 Ease of Formation of Detonation in Condensed Explosives -- 8.11 Low Explosives, Primary Explosives, and Secondary Explosives -- 8.12 Overall Classification of Condensed Explosives -- 9 Unconfined and Confined Gas Phase Explosions -- 9.1 Unconfined Explosions -- 9.2 Confined Explosions -- 9.2.1 Maximum Explosion Pressure -- 9.2.2 Violence or Rate of Pressure Rise -- 9.3 Methods of Decreasing Maximum Pressure and Maximum Rate of Pressure Rise -- 9.3.1 Relief Venting -- 9.3.2 Halons -- Suppression of Rate of Pressure Rise -- 9.4 Maximum Experimental Safety Gap -- 9.4.1 Enclosures Joined by Pipes -- 9.5 Partial Confinement -- 9.6 Sequence of Events in Typical Unconfined and Confined Explosions.9.6.1 Largest Man-made Unconfined NG Explosion: Ural Mountains.ExplosionsMathematical modelsExplosionsMathematical models.541.361Ramamurthi K.971596MiAaPQMiAaPQMiAaPQBOOK9910485597103321Modeling Explosions and Blast Waves2208945UNINA00788nam0 2200289 i 450 99655196840331620231012095020.0978-88-15-29060-120201113d2020----||||0itac50 baitaIT|||| |||c|Pragacapitale segreta d'EuropaFranco CardiniBolognaIl mulino2020346 p., [8] carte di tav.ill.21 cmIntersezioni548Intersezioni548PragaBNCF943.712CARDINI,Franco<1940- >37956ITcbacbaREICAT996551968403316X.3.B. 8815285817 L.M.X.3.B.557161BKUMAPraga3568152UNISA06012nam 2200421z- 450 991058746690332120251116145012.010.35622/inudi.b.003(CKB)5600000000496626(oapen)https://directory.doabooks.org/handle/20.500.12854/91498(EXLCZ)99560000000049662620202208d2022 |y 0spaurmn|---annanrdacontentrdamediardacarrierDiseño e implementación de un sistema de monitoreo y adquisición de datos de parámetros eléctricos y ambientales de un sistema fotovoltaico conectado a la red de 3kWPunoInstituto Universitario de Innovación Ciencia y Tecnología Inudi Perú20221 electronic resource (181 p.)612-48813-2-2 In the present research work, a wireless monitoring and data acquisition system with an interface in LabVIEW was designed and implemented in real-time to monitor the electrical and environmental parameters of a 3kW SFCR. cable integrating devices such as a Raspberry pi 3B+, an Arduino Nano, using a 03 PT100 temperature sensor, a voltage divider as a voltage sensor, ACS758 current sensor, a calibrated cell as an irradiance sensor, and a graphics and storage interface From the data of a program developed in LabVIEW, the model and 3D printing of the pieces of the carcass can also be implemented, thus implementing a prototype with a DIN holder. Everything is oriented according to the IEC-61724-2017 standard. In the period of 05 days, it gives us the following results: Influence of the temperature in the photovoltaic module, in which we were able to observe that the temperatures of each cell in the module are not the same, having a deviation of up to 3C which it causes lost by dispersion of parameters. Influence of the temperature on the photovoltaic generator, in which we could observe that the temperature and the voltage in a photovoltaic system are inversely proportional, and when the hottest is a photovoltaic module is less efficient, in this section, temperatures up to 52.31C were recorded. the surface of the photovoltaic module. Influence of the irradiance on the photovoltaic generator, apart from which we observed that the irradiance and the generated current are directly proportional, events of extreme solar irradiance were also present, being higher and less prolonged on June 17, 2021, with a value of 1245.89[W/m2], a duration of 06 seconds, recorded at 11:39:13 and the longest, presented the same day, with a value of 1219.75[W/m2], a duration of 176 seconds recorded at 11:34:17 seconds. Finally, it is concluded that the indicators provided on the energy generated by the SFRC under certain environmental conditions are reliable due to the guidelines with the proposed standard, calibration, and validation of the readings of the sensors and other components used.En el presente trabajo de investigación se realizó el diseño e implementación de un sistema de monitoreo y adquisición de datos inalámbrico con un interfaz en LabVIEW en tiempo real para monitoreo de parámetros eléctricos en DC y ambientales de un SFCR de 3kW, El cual se llevó a cabo integrando dispositivos como un Raspberry pi 3B+, un Arduino Nano, usando como sensores de temperatura 03 PT100, como sensor de tensión un divisor de tensión, como sensor de corriente el ACS758, como sensor de irradiancia una celda calibrada y como interfaz gráfica y almacenamiento de datos un programa elaborado en LabVIEW, también se hizo el modelado e impresión en 3D de las piezas de la carcasa pudiendo así implementar un prototipo con un sujetador para riel DIN. Todo esto orientado bajo la norma IEC-61724-2017. En el periodo de prueba de 05 días nos entrega los siguientes resultados: Influencia de la temperatura en el módulo fotovoltaico, en el cual pudimos observar que las temperaturas de cada célula en el módulo no son iguales, teniendo una desviación de hasta 3C el cual ocasiona pérdidas por dispersión de parámetros. Influencia de la temperatura en el generador fotovoltaico, en el cual pudimos observar que la temperatura y la tensión en un sistema fotovoltaico son inversamente proporcionales y cuando más caliente esté un módulo fotovoltaico es menos eficiente, en este apartado se registró temperaturas de hasta 52.31C en la superficie del módulo fotovoltaico. Influencia de la irradiancia en el generador fotovoltaico, apartado en el cual observamos que la irradiancia y la corriente generada son directamente proporcionales, también se presentó eventos de irradiancia solar extrema, siendo el más alto y menos prolongado el día 17 de Junio del 2021, con un valor 1245.89[W/m2], una duración de 06 segundos, registrados a las 11:39:13 y el más prolongado, presentado el mismo día, con un valor de 1219.75[W/m2], una duración de 176 segundos registrados a las 11:34:17 segundos. Finalmente se concluye que los indicadores proporcionados sobre la energía generada por el SFRC bajo ciertas condiciones ambientales son confiables debido a lineamientos con la norma propuesta, calibración y validación de las lecturas de los sensores y demás componentes usados.Energy efficiencybicsscPerufastSistema de MonitoreoAdquisición de DatosSistema Fotovoltaico Conectado a la RedEnergy efficiency621.31244Cruz Edissonauth1311184Beltrán NormanauthCondori ReynaldoauthInstituto Universitario de Innovación Ciencia y Tecnología Inudi Perú.BOOK9910587466903321Diseño e implementación de un sistema de monitoreo y adquisición de datos de parámetros eléctricos y ambientales de un sistema fotovoltaico conectado a la red de 3kW3030031UNINA