03651nam 2200565 450 99651186350331620231005193752.09783031142758(electronic bk.)978303114274110.1007/978-3-031-14275-8(MiAaPQ)EBC7191448(Au-PeEL)EBL7191448(CKB)26089876900041(DE-He213)978-3-031-14275-8(PPN)268204969(EXLCZ)992608987690004120230513d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierTen projects in applied statistics /Peter McCullagh1st ed. 2022.Cham, Switzerland :Springer International Publishing,[2023]©20231 online resource (415 pages)Springer Series in Statistics,2197-568XPrint version: McCullagh, Peter Ten Projects in Applied Statistics Cham : Springer International Publishing AG,c2023 9783031142741 Includes bibliographical references and index.1. Rat Surgery -- 2. Chain Saws -- 3. Fruit Flies -- 4. Growth Curves -- 5. Louse Evolution -- 6. Time Series I -- 7. Time Series II -- 8. Out of Africa -- 9. Environmental Projects -- 10. Fulmar Fitness -- 11. Basic Concepts -- 12. Principles -- 13. Initial Values -- 14. Probability Distributions -- 15. Gaussian Distributions -- 16. Space-Time Processes -- 17. Likelihood -- 18. Residual Likelihood -- 19. Response Transformation -- 20. Presentations and Reports -- 21. Q & A. .The first half of the book is aimed at quantitative research workers in biology, medicine, ecology and genetics. The book as a whole is aimed at graduate students in statistics, biostatistics, and other quantitative disciplines. Ten detailed examples show how the author approaches real-world statistical problems in a principled way that allows for adequate compromise and flexibility. The need to accommodate correlations associated with space, time and other relationships is a recurring theme, so variance-components models feature prominently. Statistical pitfalls are illustrated via examples taken from the recent scientific literature. Chapter 11 sets the scene, not just for the second half of the book, but for the book as a whole. It begins by defining fundamental concepts such as baseline, observational unit, experimental unit, covariates and relationships, randomization, treatment assignment, and the role that these play in model formulation. Compatibility of the model with the randomization scheme is crucial. The effect of treatment is invariably modelled as a group action on probability distributions. Technical matters connected with space-time covariance functions, residual likelihood, likelihood ratios, and transformations are discussed in later chapters.Springer Series in Statistics,2197-568XMathematical statisticsMathematical statisticsAsymptotic theoryEstadísticathubInvestigació quantitativathubLlibres electrònicsthubMathematical statistics.Mathematical statisticsAsymptotic theory.EstadísticaInvestigació quantitativa519.5McCullagh P. J(Peter John),479401MiAaPQMiAaPQMiAaPQ996511863503316Ten projects in applied statistics3362300UNISA