04032nam 22008532 450 991045246680332120151005020621.01-107-06482-11-139-88716-51-108-41078-21-107-05431-10-511-84353-41-107-05754-X1-107-05532-61-107-05877-51-107-05644-6(CKB)2550000001115116(EBL)1182930(OCoLC)852154587(SSID)ssj0000890242(PQKBManifestationID)11493966(PQKBTitleCode)TC0000890242(PQKBWorkID)10883084(PQKB)11356311(UkCbUP)CR9780511843532(MiAaPQ)EBC1182930(Au-PeEL)EBL1182930(CaPaEBR)ebr10753030(CaONFJC)MIL515418(EXLCZ)99255000000111511620101027d2013|||| uy| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierLaw and piety in medieval Islam /Megan H. Reid[electronic resource]Cambridge :Cambridge University Press,2013.1 online resource (xii, 249 pages) digital, PDF file(s)Cambridge studies in Islamic civilizationTitle from publisher's bibliographic system (viewed on 05 Oct 2015).0-521-88959-6 1-299-84167-8 Includes bibliographical references and index.Introduction: devotional piety and Islamic law -- The persistence of asceticism -- "Devote yourselves to deeds you can bear": voluntary fasting and bodily piety -- Charity, food and the right of refusal -- The devil at the fountain: problems in ritual -- Conclusion. Beyond transgression, beyond Sunna.The Ayyubid and Mamluk periods were two of the most intellectually vibrant in Islamic history. Megan H. Reid's book, which traverses three centuries from 1170 to 1500, recovers the stories of medieval men and women who were renowned not only for their intellectual prowess but also for their devotional piety. Through these stories, the book examines trends in voluntary religious practice that have been largely overlooked in modern scholarship. This type of piety was distinguished by the pursuit of God's favor through additional rituals, which emphasized the body as an instrument of worship, and through the rejection of worldly pleasures, and even society itself. Using an array of sources including manuals of law, fatwa collections, chronicles, and obituaries, the book shows what it meant to be a good Muslim in the medieval period and how Islamic law helped to define holy behavior. In its concentration on personal piety, ritual, and ethics the book offers an intimate perspective on medieval Islamic society.Cambridge studies in Islamic civilization.Law & Piety in Medieval IslamIslamCustoms and practicesIslamCustoms and practicesHistorySpiritual lifeIslamSpiritual lifeIslamHistoryMuslimsConduct of lifeMuslimsConduct of lifeHistoryIslamic lawMuslim scholarsBiographyIslamic civilizationIslamCustoms and practices.IslamCustoms and practicesHistory.Spiritual lifeIslam.Spiritual lifeIslamHistory.MuslimsConduct of life.MuslimsConduct of lifeHistory.Islamic law.Muslim scholarsIslamic civilization.297.5/70902Reid Megan H.1052427UkCbUPUkCbUPBOOK9910452466803321Law and piety in medieval Islam2483702UNINA08602nam 2200601 450 99651186310331620231005194050.09783031226847(electronic bk.)978303122683010.1007/978-3-031-22684-7(MiAaPQ)EBC7195640(Au-PeEL)EBL7195640(CKB)26130541300041(DE-He213)978-3-031-22684-7(PPN)268075425(EXLCZ)992613054130004120230511d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierP-adic banach space representations with applications to principal series /Dubravka Ban1st ed. 2022.Cham, Switzerland :Springer Nature Switzerland AG,[2022]©20221 online resource (219 pages)Lecture Notes in Mathematics,1617-9692 ;2325Print version: Ban, Dubravka P-Adic Banach Space Representations Cham : Springer,c2023 9783031226830 Includes bibliographical references and index.Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Admissible Banach Space Representations -- 1.2 Principal Series Representations -- 1.3 Some Questions and Further Reading -- 1.4 Prerequisites -- 1.5 Notation -- 1.6 Groups -- Part I Banach Space Representations of p-adic Lie Groups -- 2 Iwasawa Algebras -- 2.1 Projective Limits -- 2.1.1 Universal Property of Projective Limits -- 2.1.2 Projective Limit Topology -- Cofinal Subsystem -- Morphisms of Inverse Systems -- 2.2 Projective Limits of Topological Groups and oK-Modules -- 2.2.1 Profinite Groups -- Topology on Profinite Groups -- 2.3 Iwasawa Rings -- 2.3.1 Linear-Topological oK-Modules -- Definition of Iwasawa Algebra -- Fundamental System of Neighborhoods of Zero -- Embedding oK[G0], G0, and oK into oK[[G0]] -- 2.3.2 Another Projective Limit Realization of oK[[G0]] -- 2.3.3 Some Properties of Iwasawa Algebras -- Zero Divisors -- Augmentation Map -- Iwasawa Algebra of a Subgroup -- 3 Distributions -- 3.1 Locally Convex Vector Spaces -- 3.1.1 Banach Spaces -- 3.1.2 Continuous Linear Operators -- 3.1.3 Examples of Banach Spaces -- Banach Space of Bounded Functions -- Continuous Functions on G0 -- Mahler Expansion -- 3.1.4 Double Duals of a Banach Space -- 3.2 Distributions -- 3.2.1 The Weak Topology on Dc(G0,oK) -- 3.2.2 Distributions and Iwasawa Rings -- 3.2.3 The Canonical Pairing -- 3.3 The Bounded-Weak Topology -- 3.3.1 The Bounded-Weak Topology is Strictly Finer than the Weak Topology -- The Weak Topology on V' -- The Bounded-Weak Topology on V' -- 3.4 Locally Convex Topology on K[[G0]] -- 3.4.1 The Canonical Pairing -- 3.4.2 p-adic Haar Measure -- 3.4.3 The Ring Structure on Dc(G0,K) -- A Big Projective Limit -- 4 Banach Space Representations -- 4.1 p-adic Lie Groups -- 4.2 Linear Operators on Banach Spaces -- 4.2.1 Spherically Complete Spaces.4.2.2 Some Fundamental Theorems in Functional Analysis -- 4.2.3 Banach Space Representations: Definition and Basic Properties -- 4.3 Schneider-Teitelbaum Duality -- 4.3.1 Schikhof's Duality -- 4.3.2 Duality for Banach Space Representations: Iwasawa Modules -- K[[G0]]-module structure on V' -- 4.4 Admissible Banach Space Representations -- 4.4.1 Locally Analytic Vectors: Representations in Characteristic p -- Locally Analytic Vectors -- Unitary Representations and Reduction Modulo pK -- 4.4.2 Duality for p-adic Lie Groups -- Part II Principal Series Representations of Reductive Groups -- Notation in Part II -- 5 Reductive Groups -- 5.1 Linear Algebraic Groups -- 5.1.1 Basic Properties of Linear Algebraic Groups -- More Examples of Linear Algebraic Groups -- Unipotent Subgroups -- Identity Component -- Tori -- 5.1.2 Lie Algebra of an Algebraic Group -- Lie Algebras -- Lie Algebra of an Algebraic Group -- 5.2 Reductive Groups Over Algebraically Closed Fields -- 5.2.1 Rational Characters -- 5.2.2 Roots of a Reductive Group -- Weyl Group -- Abstract Root Systems -- Simple Roots -- 5.2.3 Classification of Irreducible Root Systems -- 5.2.4 Classification of Reductive Groups -- Cocharacters -- Root Datum of a Reductive Group -- Abstract Root Datum -- 5.2.5 Structure of Reductive Groups -- Root Subgroups -- Borel Subgroups and Parabolic Subgroups -- 5.3 F-Reductive Groups -- 5.4 Z-Groups -- 5.4.1 Algebraic R-Groups -- 5.4.2 Split Z-Groups -- Root Subgroups -- 5.5 The Structure of G(L) -- 5.5.1 oL-Points of Algebraic Z-Groups -- 5.5.2 oL-Points of Split Z-Groups -- 5.5.3 Coset Representatives for G/P -- 5.6 General Linear Groups -- 6 Algebraic and Smooth Representations -- 6.1 Algebraic Representations -- 6.1.1 Definition and Basic Properties -- 6.1.2 Classification of Simple Modules of Reductive Groups -- Abstract Weights -- Weights of a Reductive Group.Dominant Bases of X(T) -- Weights of a Module -- Algebraic Induction -- Simple Modules -- 6.2 Smooth Representations -- 6.2.1 Absolute Value -- 6.2.2 Smooth Representations and Characters -- 6.2.3 Basic Properties -- Isomorphic Fields -- Absolutely Irreducible Representations -- Contragredient -- Tensor Product of Representations -- 6.2.4 Admissible-Smooth Representations -- 6.2.5 Smooth Principal Series -- Normalized Induction -- Composition Factors of Principal Series -- 6.2.6 Smooth Principal Series of GL2(L) and SL2(L) -- 7 Continuous Principal Series -- 7.1 Continuous Principal Series Are Banach -- 7.1.1 Direct Sum Decomposition of IndP0G0(χ0-1) -- 7.1.2 Unitary Principal Series -- 7.1.3 Algebraic and Smooth Vectors -- Algebraic Characters -- Smooth Characters -- 7.1.4 Unitary Principal Series of GL2(Qp) -- 7.2 Duals of Principal Series -- 7.2.1 Module M0(χ) -- 7.3 Projective Limit Realization of M0(χ) -- 7.4 Direct Sum Decomposition of M(χ) -- 7.4.1 The Case G0=GL2(Zp) -- 7.4.2 General Case -- 8 Intertwining Operators -- 8.1 Invariant Distributions -- 8.1.1 Invariant Distributions on Vector Groups -- 8.1.2 ``Partially Invariant'' Distributions on Unipotent Groups -- 8.1.3 T0-Equivariant Distributions on Unipotent Groups -- 8.2 Intertwining Algebra -- 8.2.1 Ordinary Representations of GL2(Qp) -- 8.3 Finite Dimensional G0-Invariant Subspaces -- 8.3.1 Induction from the Trivial Character: Intertwiners -- 8.4 Reducibility of Principal Series -- 8.4.1 Locally Analytic Vectors -- Reducibility Question for G(Qp) -- Reducibility Question for G(L) -- 8.4.2 A Criterion for Irreducibility -- A Nonarchimedean Fields and Spaces -- A.1 Ultrametric Spaces -- A.2 Nonarchimedean Local Fields -- A.2.1 p-Adic Numbers -- A.2.2 Finite Extensions of Qp -- A.2.3 Algebraic Closure Qp -- A.3 Normed Vector Spaces -- B Affine and Projective Varieties.B.1 Affine Varieties -- B.1.1 Zariski Topology on Affine Space -- B.1.2 Morphisms and Products of Affine Varieties -- B.2 Projective Varieties -- References -- Index.This book systematically develops the theory of continuous representations on p-adic Banach spaces. Its purpose is to lay the foundations of the representation theory of reductive p-adic groups on p-adic Banach spaces, explain the duality theory of Schneider and Teitelbaum, and demonstrate its applications to continuous principal series. Written to be accessible to graduate students, the book gives a comprehensive introduction to the necessary tools, including Iwasawa algebras, p-adic measures and distributions, p-adic functional analysis, reductive groups, and smooth and algebraic representations. Part 1 culminates with the duality between Banach space representations and Iwasawa modules. This duality is applied in Part 2 for studying the intertwining operators and reducibility of the continuous principal series on p-adic Banach spaces. This monograph is intended to serve both as a reference book and as an introductory text for graduate students and researchers entering the area.Lecture Notes in Mathematics,1617-9692 ;2325Banach spacesp-adic analysisEspais de BanachthubAnàlisi p-àdicathubLlibres electrònicsthubBanach spaces.p-adic analysis.Espais de BanachAnàlisi p-àdica515.732Ban Dubravka1312195MiAaPQMiAaPQMiAaPQ996511863103316P-Adic Banach Space Representations3030777UNISA01149nam0 22003133i 450 PUV109915820231121125621.0978019920396320150114d2007 ||||0itac50 baenggbz01i xxxe z01nCollected papers on latin poetryR. O. A. M. LyneOxfordOxford University Press2007XIX, 418 p.24 cmPoesia latinaFontiFIRRMLC419331I871.01Poesia latina. Origini-50021880Letteratura classica.22Lyne, Richard Oliver Allen MarcusUFIV022903486384Lyne, R. O. A. M.TSAV008381Lyne, Richard Oliver Allen MarcusITIT-0120150114IT-FR0017 Biblioteca umanistica Giorgio ApreaFR0017 NPUV1099158Biblioteca umanistica Giorgio Aprea 52S.SIJ. H2 Lyn. (2007) 52FLS0000326845 VMB RS A 2015011420150114 52Collected papers on latin poetry3614823UNICAS