00883nam0-22003131i-450 99000109313040332120221027132123.0000109313FED01000109313(Aleph)000109313FED0100010931320000920d1967----km-y0itay50------baengSources of quantum mechanicsedited with a historical introduction by B.L. Van Der WaerdenAmsterdamNorth-Holland1967430 p.25 cmMeccanica quantistica530.12Van Der waerden,B.l.26226ITUNINARICAUNIMARCBK990001093130403321S.22-13616568FI1S.22-030FI122-113.001FI1FI1Sources of Quantum Mechanics343488UNINAING0104091nam 2200505 450 99649517110331620230417104023.0981-19-4793-7(MiAaPQ)EBC7105506(Au-PeEL)EBL7105506(CKB)24978817500041(PPN)265862345(EXLCZ)992497881750004120230304d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierIntegral calculus for engineers /Gavril Păltineanu, Ileana Bucur, Mariana ZamfirGateway East, Singapore :Springer,[2022]©20221 online resource (263 pages)Print version: Paltineanu, Gavriil Integral Calculus for Engineers Singapore : Springer,c2022 9789811947926 Includes bibliographical references and index.Intro -- Preface -- Contents -- 1 Indefinite Integrals -- 1.1 The Notion of Primitive Function (Antiderivative) of a Function -- 1.2 Basic Properties of Indefinite Integrals -- 1.3 Primitives of Rational Functions -- 1.4 Primitives of Trigonometric Functions -- 1.5 Primitives of Irrational Functions. Binomial Integrals -- 2 Definite Integrals -- 2.1 Area of a Curvilinear Trapezoid -- 2.2 Darboux Sums. Definition of Definite Integral -- 2.3 Integrability of Continuous and Monotonic Functions -- 2.4 Riemann Sums. Riemann Criterion for Integrability -- 2.5 Lebesgue Criterion for Integrability -- 2.6 Properties of Integrable Functions -- 2.7 Area of a Plane Figure -- 2.8 Approximating Definite Integral -- 3 Improper Integrals -- 3.1 Convergence and Divergence of Improper Integrals -- 3.2 Convergence Criteria for Improper Integrals -- 4 Integrals Depending on Parameter -- 4.1 Proper Integrals Depending on a Parameter -- 4.2 Improper Integrals Depending on a Parameter -- 4.3 Euler Integrals -- 5 Line Integrals -- 5.1 Parameterized Paths. Definition of a Curve -- 5.2 Rectifiable Paths and Curves -- 5.3 Natural Parameterization of a Curve -- 5.4 Line Integrals of the First Kind -- 5.5 Line Integrals of the Second Kind -- 5.6 Independence on the Path of Line Integral of the Second Kind -- 6 Double and Triple Integrals -- 6.1 Double Integral. Definition and Properties -- 6.2 Basic Properties of the Double Integral -- 6.3 Reducing a Double Integral to an Iterated Single Integral -- 6.4 Change of Variables in Double Integral -- 6.5 Applications of the Double Integral in Geometry and Mechanics -- 6.5.1 Mass of a Lamina -- 6.5.2 Coordinates of the Center of Mass of a Lamina -- 6.5.3 Moments of Inertia of a Lamina -- 6.6 Riemann-Green Formula -- 6.7 Improper Double Integrals -- 6.8 Volume of a Space Figure.6.9 Triple Integrals. Definition and Basic Properties -- 6.10 Computing Triple Integral. Change of Variables in Triple Integral -- 6.11 Applications of the Triple Integral in Geometry and Mechanics -- 6.11.1 Volume of a Space Domain -- 6.11.2 Mass of a Solid -- 6.11.3 Coordinates of the Center of Mass of a Solid -- 6.11.4 Moment of Inertia of a Solid -- 7 Surface Integrals -- 7.1 Parameterized Surface Canvases. Definition of a Surface -- 7.2 The Area of a Smooth Surface -- 7.3 Surface Integral of the First Kind -- 7.4 Surface Integral of the Second Kind -- 7.5 Integral Formulas -- References -- Index.Calculus, IntegralEngineering mathematicsCàlcul integralthubMatemàtica per a enginyersthubLlibres electrònicsthubCalculus, Integral.Engineering mathematics.Càlcul integralMatemàtica per a enginyers515.43Păltineanu Gavril1252227MiAaPQMiAaPQMiAaPQBOOK996495171103316Integral calculus for engineers3041719UNISA