06574nam 2200517 450 99649517100331620231110223406.0981-19-5916-1(MiAaPQ)EBC7105512(Au-PeEL)EBL7105512(CKB)24978818100041(PPN)26585993X(EXLCZ)992497881810004120230304d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierIntelligent algorithms for packing and cutting problem /Yunqing Rao, Qiang LuoGateway East, Singapore :Springer,[2022]©20221 online resource (338 pages)Engineering applications of computational methodsPrint version: Rao, Yunqing Intelligent Algorithms for Packing and Cutting Problem Singapore : Springer,c2022 9789811959158 Includes bibliographical references.Intro -- Preface -- Contents -- 1 Introduction to the Packing and Cutting Problem -- 1.1 Problem Definition -- 1.1.1 Packing Problem -- 1.1.2 Cutting Problem -- 1.2 Literature Review -- 1.2.1 Review for 2DRSP -- 1.2.2 Review for 2DISP -- 1.2.3 Review for CSP -- 1.3 Development Trends -- References -- 2 Intelligent Algorithms for Rectangular Packing Problem -- 2.1 Problem Description -- 2.2 Memetic Algorithm for the Problem -- 2.2.1 Introduction -- 2.2.2 The Placement Strategy -- 2.2.3 The Memetic Algorithm -- 2.2.4 Implementation of Memetic Algorithm -- 2.2.5 Experimental Results -- 2.3 Discrete Grey Wolf Optimization -- 2.3.1 Introduction -- 2.3.2 Improved Best-Fit Heuristic Algorithm -- 2.3.3 Discrete Grey Wolf Optimization -- 2.3.4 Experimentation and Results -- 2.4 Conclusions -- References -- 3 Intelligent Algorithms for Irregular Packing Problem -- 3.1 Problem Description -- 3.2 The Geometrical Technique -- 3.3 Memetic Algorithm for the Problem -- 3.3.1 Introduction -- 3.3.2 The Memetic Algorithm -- 3.3.3 The Realization of the Adaptive Memetic Algorithm -- 3.3.4 Experimental Study and Discussions -- 3.4 Beam Search Hybridized with Tabu Search for the Problem -- 3.4.1 Introduction -- 3.4.2 Placement Principle Based on Improved NFP -- 3.4.3 The Hybrid Algorithm for Searching Sequence -- 3.4.4 Experimental Results and Discussions -- 3.5 Biased Genetic Algorithm Hybridized with VNS for the Problem -- 3.5.1 Introduction -- 3.5.2 Placement Method -- 3.5.3 Biased Genetic Algorithm Hybridized with VNS -- 3.5.4 Experimental Results and Discussions -- 3.6 Conclusions -- Appendix -- References -- 4 Novel Algorithms for 2DRSP and 2DISP -- 4.1 Reinforcement Learning Algorithm for 2DRPP -- 4.1.1 Introduction and Problem Description -- 4.1.2 Lowest Centroid Placement Method -- 4.1.3 Sequence Optimization Based on Q-learning.4.1.4 Computational Packing Experiments -- 4.2 Reinforcement Learning Algorithm for 2DIPP -- 4.2.1 Introduction -- 4.2.2 Description of Packing Problem -- 4.2.3 Positioning Strategy Based on BL -- 4.2.4 Sequence Optimization Strategy -- 4.2.5 Computational Experiment -- 4.3 Sequential Transfer-Based PSO for 2DIPP -- 4.3.1 Introduction -- 4.3.2 Novel Positioning Strategy Based on NFP -- 4.3.3 Description of Sequence Transfer -- 4.3.4 Computational Experiments -- References -- 5 Solutions for New Variants of Packing Problem -- 5.1 Knapsack Packing Problem with Defects -- 5.1.1 Introduction and Literature Review -- 5.1.2 Problem Description -- 5.1.3 The Approach for the Problem -- 5.1.4 Numerical Experiments and Conclusions -- 5.2 Irregular Packing Problem with Defects -- 5.2.1 Introduction and Problem Description -- 5.2.2 Literature Review -- 5.2.3 Genetic Algorithm and Grey Wolf Optimization -- 5.2.4 Heuristic Placement Algorithm -- 5.2.5 Computational Results and Conclusions -- 5.3 Rectangular Packing Problem with Divisible Items -- 5.3.1 Introduction and Problem Description -- 5.3.2 Related Work -- 5.3.3 The Heuristic Placement Method -- 5.3.4 Integration with Metaheuristic -- 5.3.5 Numerical Experiments and Conclusions -- Appendix -- References -- 6 Integration of Packing and Cutting -- 6.1 An Integrated Approach on Packing and Cut Planning -- 6.1.1 Introduction -- 6.1.2 The Three-Stage Solution -- 6.1.3 Mathematical Modeling -- 6.1.4 The Solving Approach -- 6.1.5 Computational Experiments and Discussion -- 6.2 An Integrated System for Packing and Cutting-Punching -- 6.2.1 Introduction -- 6.2.2 The Overall Structure -- 6.2.3 The Data Structure of IKBS -- 6.2.4 The Knowledge Base of IKBS -- 6.2.5 Case Study and Discussion -- 6.3 An Integrated System for Packing and Sheet Metal Cutting -- 6.3.1 Introduction -- 6.3.2 The System Overall Structure.6.3.3 Nest Planning -- 6.3.4 CAD/CAPP/CAM -- 6.3.5 Case Study -- References -- 7 Intelligent Algorithms for Cutting Scheduling Problem -- 7.1 Problem Description -- 7.2 Improved Hierarchical Genetic Algorithm for the CSP -- 7.2.1 Introduction -- 7.2.2 Problem Statement and Mathematical Modeling -- 7.2.3 Ant Colony-Hierarchical Genetic Algorithm -- 7.2.4 Computational Experiments -- 7.2.5 Conclusions -- 7.3 Hybrid Genetic Algorithm for the Bi-Objective CSP -- 7.3.1 Introduction -- 7.3.2 Problem Description and Formulation -- 7.3.3 VNSGA III Based on Reference Points -- 7.3.4 Evaluation Metric -- 7.3.5 Experimental Design and Results -- 7.4 GWO Algorithm for the Bi-Objective CSP -- 7.4.1 Introduction -- 7.4.2 Problem Description and Formulation -- 7.4.3 Reference-Point-Based GWO Algorithm -- 7.4.4 Experimental Design and Results -- References -- 8 Application on Laser Cutting of Metal Sheets -- 8.1 Introduction to LaserCAM Software -- 8.1.1 Graphics Module -- 8.1.2 Packing Module -- 8.1.3 Laser Cutting Module -- 8.1.4 NC and Report Module -- 8.2 Case 1: Rectangular Packing and Cutting -- 8.3 Case 2: Irregular Packing and Cutting.Engineering Applications of Computational Methods Cutting stock problemCyberneticsCibernèticathubLlibres electrònicsthubCutting stock problem.Cybernetics.Cibernètica511.64Rao Yunqing1261568MiAaPQMiAaPQMiAaPQBOOK996495171003316Intelligent algorithms for packing and cutting problem3041724UNISA01829nam0 22003853i 450 AQ1001349720251003044042.00387558225New York3540558225Berlin20110927d1992 ||||0itac50 baengdez01i xxxe z01nCONCUR '92third International conference on concurrency theoryStony Brook, NY, USA, August 24-27, 1992proceedingsW. R. Cleaveland (ed.)Berlin [etc.]Springer1992580 p.25 cmLecture notes in computer scienceedited by G. Goos and J. Hartmanis630001MIL00307032001 Lecture notes in computer scienceedited by G. Goos and J. Hartmanis630702 1Goos, GerhardAQ1V006441340ELABORAZIONE PARALLELA DEI DATICONGRESSI1992FIRMILC046229I004ELABORAZIONE DEI DATI. SCIENZA DEGLI ELABORATORI. INFORMATICA14004.35Modi di elaborazione. Multielaborazione22ConvegniCongressi e convegniCongressiConvegniCongressiCongressi e convegniCleaveland, W. RanceAQ1V007329340International conference on concurrency theory <3. ; 1992 ; Stony Brook>AQ1V007328070714708CONCUR <3. ; 1992 ; Stony Brook>AQ1V007330International conference on concurrency theory <3. ; 1992 ; Stony Brook>ITIT-00000020110927IT-BN0095 AQ10013497Biblioteca Centralizzata di Ateneo193 v. 01COLL. ING. LNCS 0102 0000012565 VMA FD630 v. 630Y 1994070720110927 01CONCUR '921382050UNISANNIO