06838nam 2200445 450 99649516330331620230304181505.0981-19-4371-0(MiAaPQ)EBC7118633(Au-PeEL)EBL7118633(CKB)25171056500041(PPN)265861942(EXLCZ)992517105650004120230304d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierDynamic equivalent modeling of acoustic metamaterials solving problem of noise and vibration /Nansha Gao, Jie DengSingapore :Springer,[2022]©20221 online resource (185 pages)Print version: Gao, Nansha Dynamic Equivalent Modeling of Acoustic Metamaterials Singapore : Springer,c2022 9789811943706 Includes bibliographical references.Intro -- Preface -- Research and Application on Dynamic Equivalent Inverse Problem of Acoustic Metamaterials -- Contents -- 1 Introduction -- 1.1 Research Background and Significance -- 1.1.1 The Harmful Effects of Vibrations and Noise -- 1.1.2 Vibration and Noise Control Methods -- 1.2 Review of Phononic Crystals and Acoustic Metamaterials -- 1.2.1 The History of Development of Phononic Crystals and Acoustic Metamaterials -- 1.2.2 Equivalence Theory of Phononic Crystals and Acoustic Metamaterials -- 1.2.3 Recent Development Trend of Phononic Crystals and Acoustic Metamaterials -- 1.3 A Brief Introduction into the Research Done in this Work -- 1.3.1 Research Contents -- 1.3.2 Book Structure Organization -- References -- 2 Basic Theories of Acoustic Metamaterials for Solving the Dynamic Equivalent Inverse Problem -- 2.1 Introduction -- 2.2 Basic Theories of Acoustic Metamaterials -- 2.2.1 Wave Equations in Elastic Media -- 2.2.2 Lattice Theory of Photonic Crystals -- 2.2.3 Bloch's Theorem and Brillouin Zones -- 2.3 A Theory of Dynamic Equivalence for Solving the Inverse Problems of Acoustic Metamaterials -- 2.3.1 Methods of Calculating the Dispersion Relation and Energy Band Relation of Acoustic Metamaterials -- 2.3.2 Theoretical Model of Dynamic Equivalence for Solving the Inverse Problems of Acoustic Metamaterials -- 2.3.3 Theoretical Model for Solving the Inverse Problems of Acoustic-Electric Analogical Equivalence -- 2.4 Chapter Summary -- References -- 3 Theoretical Model for Solving the Inverse-Problem of Dynamic Equivalent Media of Periodic Rod-Beam Structures -- 3.1 Introduction -- 3.2 Periodic Rod-Beam Structures -- 3.2.1 Calculation Model of Periodic Rod-Beam Structure -- 3.2.2 Dispersion Relation and Energy Band Relation of the Periodic Rod-Beam Structure -- 3.2.3 Vibration Mode Analysis for the Periodic Rod-Beam Structure.3.3 Theoretical Model for Solving the Inverse Problems of Dynamic Equivalent Media of Periodic Rod-Beam Structures -- 3.3.1 Wave Equations of Beam Structures -- 3.3.2 Calculation of Dynamic Equivalent Material Parameters of Periodic Beam Structures -- 3.3.3 Verification of Dynamic Equivalent Material Parameters of the Periodic Beam Structure -- 3.4 Theoretical Model for Solving the Inverse Problems of Dynamic Equivalent Media of Periodic Rods -- 3.4.1 The Wave Equation of a Rod -- 3.4.2 Calculation of Dynamic Equivalent Material Parameters of Periodic Rods -- 3.4.3 Verification by Dynamic Equivalent Material Parameters of Periodic Rod Structures -- 3.5 Chapter Summary -- References -- 4 Theoretical Model for Solving the Inverse Problems of Dynamic Equivalent Media of Periodic Plate Structures -- 4.1 Introduction -- 4.2 Periodic Plate Structure with Circular Holes -- 4.2.1 A Model of Periodic Plate Structure with Circular Holes -- 4.2.2 Dispersion Relation and Energy Band Relation of Periodic Plate Structures with Circular Holes -- 4.3 Theoretical Model for Solving the Inverse Problems of Dynamic Equivalent Media of Periodic Plate Structures with Circular Holes -- 4.3.1 The Wave Equation of a Plate Structure -- 4.3.2 Calculation of Dynamic Equivalent Material Parameters of Periodic Plate Structures with Circular Holes -- 4.3.3 Verification of Dynamic Equivalent Material Parameters of the Periodic Plate Structure with Circular Holes -- 4.4 Chapter Summary -- References -- 5 Study on the Vibration Characteristics of a Gradient Rod Based on the Theoretical Model for Solving the Inverse Problem of the Dynamic Equivalent Medium -- 5.1 Introduction -- 5.2 Gradient Rod Structure -- 5.2.1 Dispersion Relation and Energy Band Relation of a Cell Structure of the Gradient Rod Structure.5.2.2 Dynamic Equivalent Material Parameters of a Cell Structure of the Gradient Rod -- 5.2.3 Equivalent Model of Gradient Rod -- 5.3 Propagation Characteristics of the Gradient Rod Structure -- 5.3.1 Theoretical Analysis of Vibration Propagation Characteristics of the Gradient Rod Structure -- 5.3.2 Finite Element Analysis of Vibration Transmission Characteristics of the Gradient Rod Structure -- 5.4 Chapter Summary -- Reference -- 6 Study on the Low-Frequency Bandgap Mechanism of a Multilayer Slit-Tube Structure Based on the Acoustic-Electric Analogical Equivalent Model -- 6.1 Introduction -- 6.2 Multilayer Slit-Tube Acoustic Metamaterials -- 6.2.1 Dispersion Relation Calculation of Multilayer Slit-Tube Acoustic Metamaterials -- 6.2.2 Dispersion Relation Analysis of Multilayer Slit-Tube Acoustic Metamaterials -- 6.2.3 Vibration Mode Analysis of Multilayer Slit-Tube Acoustic Metamaterials -- 6.3 Acoustic-Electric Analogical Equivalent Model for Multilayer Slit-Tube Acoustic Metamaterials -- 6.3.1 Acoustic-Electric Analogical Equivalent Model Under Resonant Modes -- 6.3.2 Influencing Factor Analysis of Resonant Modes Based on the Acoustic-Electric Analogical Equivalent Model -- 6.4 Study on the Acoustic Transmission Characteristics of Finite Rows of Multilayer Slit-Tube Structures -- 6.5 Inverse Design of a Multi-Layer Slit-Tube Structure Based on the Acoustic-Electric Analogical Equivalent Model -- 6.6 Experimental Test and Data Analysis -- 6.6.1 Design and Preparation of Samples -- 6.6.2 Test Principles of Standing Wave Tubes -- 6.6.3 Experimental Test Scheme -- 6.6.4 Experimental Results and Discussion -- 6.7 Chapter Summary -- References.Noise controlNoise control.700Gao Nansha1262939Deng JieMiAaPQMiAaPQMiAaPQBOOK996495163303316Dynamic equivalent modeling of acoustic metamaterials3041730UNISA