06726nam 2200469 450 99649036090331620230220141430.03-031-16980-8(MiAaPQ)EBC7098183(Au-PeEL)EBL7098183(CKB)24865886200041(PPN)264953258(EXLCZ)992486588620004120230220d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierSimulation and synthesis in medical imaging 7th international workshop, SASHIMI 2022, held in conjunction with MICCAI 2022, Singapore, September 18, 2022 : proceedings /Can Zhao [and three others]Cham, Switzerland :Springer International Publishing,[2022]©20221 online resource (176 pages)Lecture Notes in Computer Science Ser. ;v.13570Print version: Zhao, Can Simulation and Synthesis in Medical Imaging Cham : Springer International Publishing AG,c2022 9783031169793 Intro -- Preface -- Organization -- Contents -- Subject-Specific Lesion Generation and Pseudo-Healthy Synthesis for Multiple Sclerosis Brain Images -- 1 Introduction -- 1.1 Related Works -- 1.2 Contributions -- 2 Methods -- 2.1 Generators -- 2.2 Discriminators -- 2.3 Losses -- 3 Experiments -- 3.1 Evaluation -- 3.2 Implementation -- 3.3 Data -- 3.4 Results -- 4 Conclusion -- References -- Generating Artificial Artifacts for Motion Artifact Detection in Chest CT -- 1 Introduction -- 2 Methods -- 3 Experiments -- 4 Results -- 5 Discussion -- References -- Probabilistic Image Diversification to Improve Segmentation in 3D Microscopy Image Data -- 1 Introduction -- 2 Probabilistic Image Diversification -- 3 Experiments and Results -- 3.1 Data Augmentation -- 3.2 Benchmarking -- 3.3 Test-Time Augmentation -- 4 Discussion and Conclusion -- References -- Pathology Synthesis of 3D Consistent Cardiac MR Images Using 2D VAEs and GANs -- 1 Introduction -- 1.1 Contributions -- 2 Method -- 2.1 Pathology Synthesis -- 2.2 Modeling Slice Relationship -- 2.3 Data and Implementation -- 3 Results -- 3.1 Pathology Synthesis -- 3.2 Modeling the Slice Relationship -- 4 Discussion and Conclusion -- References -- .26em plus .1em minus .1emHealthyGAN: Learning from Unannotated Medical Images to Detect Anomalies Associated with Human Disease -- 1 Introduction -- 2 HealthyGAN: The Proposed Method -- 2.1 Network Architecture -- 2.2 Training -- 2.3 Detecting Anomalies -- 3 Experiments and Results -- 3.1 COVID-19 Detection -- 3.2 Chest X-ray 14 Diseases Detection -- 3.3 Migraine Detection -- 4 Conclusion -- A Implementation Details -- B Network Architectures -- B.1 Discriminator -- B.2 Generator -- References -- Bi-directional Synthesis of Pre- and Post-contrast MRI via Guided Feature Disentanglement -- 1 Introduction -- 2 Methodology -- 3 Experiments and Results.4 Conclusion -- References -- Morphology-Preserving Autoregressive 3D Generative Modelling of the Brain -- 1 Introduction -- 2 Background -- 2.1 VQ-VAE -- 2.2 Transformer -- 3 Methods -- 3.1 Descriptive Quantization for Transformer Usage -- 3.2 Autoregressive Modelling of the Brain -- 4 Experiments and Results -- 4.1 Quantitative Image Fidelity Evaluation -- 4.2 Morphological Evaluation -- 5 Conclusion -- 6 Appendix -- 6.1 VQ-VAEs -- 6.2 Transformers -- 6.3 Losses -- 6.4 Datasets -- 6.5 VBM Analysis -- References -- Can Segmentation Models Be Trained with Fully Synthetically Generated Data? -- 1 Background -- 2 Materials and Methods -- 2.1 Materials -- 2.2 Methods -- 2.3 Segmentation Network Used for the Experiments -- 3 Experiments -- 3.1 Can We Learn to Segment Healthy Regions Using Synthetic Data? -- 3.2 Can Synthetic Generative Models Address Out-of-Distribution Segmentation? -- 3.3 Can We Learn to Segment Pathologies from Synthetic Data? -- 4 Discussion and Conclusion -- A Training Set-Ups -- A.1 Training brainSPADE -- A.2 Training Segmentation nnU-Nets -- B Additional Figures -- References -- Multimodal Super Resolution with Dual Domain Loss and Gradient Guidance -- 1 Introduction -- 2 Materials and Methods -- 3 Experiments -- 4 Discussion and Conclusion -- References -- Brain Lesion Synthesis via Progressive Adversarial Variational Auto-Encoder -- 1 Introduction -- 2 Methodology -- 2.1 Model Architecture -- 2.2 Condition and Mask Embedding Blocks -- 2.3 Loss Functions -- 3 Experiments -- 3.1 Dataset -- 3.2 Implementation Details -- 3.3 Evaluation Metrics -- 3.4 Experimental Results -- 4 Discussion and Conclusion -- References -- Contrastive Learning for Generating Optical Coherence Tomography Images of the Retina -- 1 Introduction -- 2 Related Work -- 3 Methods -- 4 Experiments and Results -- 4.1 Dataset -- 4.2 Model Training.4.3 Results -- 5 Conclusions -- References -- A Novel Method Combining Global and Local Assessments to Evaluate CBCT-Based Synthetic CTs -- 1 Introduction -- 2 Methods -- 2.1 Data Acquisition and Processing -- 2.2 Validation Methodology -- 3 Results -- 3.1 Validation Methodology -- 4 Discussion -- 5 Conclusion -- References -- SuperFormer: Volumetric Transformer Architectures for MRI Super-Resolution -- 1 Introduction -- 2 Method -- 2.1 Feature Embedding -- 2.2 Volume Embedding -- 2.3 3D Deep Feature Extraction -- 2.4 HQ Volume Reconstruction -- 3 Experimental Setup -- 3.1 Implementation Details -- 3.2 Results -- 4 Conclusion -- References -- Evaluating the Performance of StyleGAN2-ADA on Medical Images -- 1 Introduction -- 2 Methods -- 2.1 Data -- 2.2 Generative Modeling -- 2.3 Evaluation Measures -- 3 Results -- 4 Conclusion -- References -- Backdoor Attack is a Devil in Federated GAN-Based Medical Image Synthesis -- 1 Introduction -- 2 Methods -- 2.1 Federated Generative Adversarial Network -- 2.2 Backdoor Attack Strategies -- 2.3 Defense Strategies -- 3 Experiments -- 3.1 Experimental Settings -- 3.2 Implementation of Attack -- 3.3 Implementation of Defense -- 3.4 Results and Discussion -- 4 Conclusion -- A More Experiment Results -- B WGAN-GP with Large Trigger Size -- References -- Author Index.Lecture Notes in Computer Science Ser.Diagnostic imagingData processingDiagnostic imagingDigital techniquesDiagnostic imagingData processing.Diagnostic imagingDigital techniques.616.0754Zhao CanMiAaPQMiAaPQMiAaPQBOOK996490360903316Simulation and Synthesis in Medical Imaging2916762UNISA