03231nam 2200577 450 991048099750332120170822144357.01-4704-0208-4(CKB)3360000000464803(EBL)3114543(SSID)ssj0000889282(PQKBManifestationID)11482815(PQKBTitleCode)TC0000889282(PQKBWorkID)10876593(PQKB)10964761(MiAaPQ)EBC3114543(PPN)195415035(EXLCZ)99336000000046480319970716h19971997 uy| 0engur|n|---|||||txtccrTwo classes of Riemannian manifolds whose geodesic flows are integrable /Kazuyoshi KiyoharaProvidence, Rhode Island :American Mathematical Society,[1997]©19971 online resource (159 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 619"November 1997, volume 130, number 619 (third of 4 numbers)."0-8218-0640-8 Includes bibliographical references (pages 142-143).""Contents""; ""Preface""; ""Part 1. Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local Structure of Proper Liouville Manifolds""; ""1.1. Liouville manifolds and the properness""; ""1.2. Infinitesimal structure at a point in M[sup(s)]""; ""1.3. Local structure around a point in M[sup(s)]""; ""1.4. Proof of Lemma 1.2.7""; ""2. Global Structure of Proper Liouville Manifolds""; ""2.1. Submanifolds J""; ""2.2. Admissible submanifolds""; ""2.3. The core of a proper Liouville manifold""; ""3. Proper Liouville Manifolds of Rank One""""3.1. Configuration of zeros and type of cores""""3.2. Possible cores""; ""3.3. Constructing a Liouville manifold from a possible core""; ""3.4. Classification""; ""3.5. Isomorphisms and isometries""; ""3.6. C[sub(2)]Ï€-metrics""; ""Appendix. Simply Connected Manifolds of Constant Curvature""; ""A.1. Possible cores""; ""A.2. The sphere S[sup(n)]""; ""A.3. The euclidean space R[sup(n)]""; ""A.4. The hyperbolic space H[sup(n)]""; ""Part 2. Kahler-Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local calculus on M[sup(1)]""; ""2. Summing up the local data""""3. Structure of M â€? M[sup(1)""""4. Torus action and the invariant hypersurfaces""; ""5. Properties as a toric variety""; ""6. Bundle structure associated with a subset of A""; ""7. The case where #A = 1""; ""8. Existence theorem""; ""References""Memoirs of the American Mathematical Society ;no. 619.Geodesic flowsRiemannian manifoldsElectronic books.Geodesic flows.Riemannian manifolds.510 s516.3/73Kiyohara Kazuyoshi1954-891588MiAaPQMiAaPQMiAaPQBOOK9910480997503321Two classes of Riemannian manifolds whose geodesic flows are integrable1991393UNINA00917nlm 2200265Ia 450 99649016580331620221018134103.019840306d1662---- uy |engUKdrcnuOne blow at Babelin those of the people called Behmenites whose foundation is not upon that of the prophets ... but upon their own carnal conceptions begotten in their imaginations upon Jacob Behmen's writings &c. ...by John AnderdonLondon[s.n.]1662Testo elettronico (PDF) (8 p.)Base dati testualeRiproduzione dell'originale nella British LibraryMisticaStoriaBNCF204.22ANDERDON,John1624?-1685.1004697ITcbaREICAT996490165803316EBEROne blow at Babel2392697UNISA