02878nam 2200637 450 99646686910331620220428110238.03-540-69697-010.1007/BFb0094576(CKB)1000000000437330(SSID)ssj0000321690(PQKBManifestationID)12133182(PQKBTitleCode)TC0000321690(PQKBWorkID)10280795(PQKB)10553056(DE-He213)978-3-540-69697-1(MiAaPQ)EBC5578750(MiAaPQ)EBC6700110(Au-PeEL)EBL5578750(OCoLC)1066197182(Au-PeEL)EBL6700110(PPN)155213059(EXLCZ)99100000000043733020220428d1998 uy 0engurnn#008mamaatxtccrThe boundary-domain integral method for elliptic systems /Andreas Pomp1st ed. 1998.Berlin ;Heidelberg :Springer-Verlag,[1998]©19981 online resource (XVI, 172 p.)Lecture Notes in Mathematics ;1683Bibliographic Level Mode of Issuance: Monograph3-540-64163-7 Pseudohomogeneous distributions -- Levi functions for elliptic systems of partial differential equations -- Systems of integral equations, generated by Levi functions -- The differential equations of the DV model -- Levi functions for the shell equations -- The system of integral equations and its numerical solution -- An example: Katenoid shell under torsion.This monograph gives a description of all algorithmic steps and a mathematical foundation for a special numerical method, namely the boundary-domain integral method (BDIM). This method is a generalization of the well-known boundary element method, but it is also applicable to linear elliptic systems with variable coefficients, especially to shell equations. The text should be understandable at the beginning graduate-level. It is addressed to researchers in the fields of numerical analysis and computational mechanics, and will be of interest to everyone looking at serious alternatives to the well-established finite element methods.Lecture notes in mathematics (Springer-Verlag) ;1683.MathematicsDifferential equations, PartialNumerical analysisMathematics.Differential equations, Partial.Numerical analysis.51065N38mscPomp Andreas1952-61765MiAaPQMiAaPQMiAaPQBOOK996466869103316Boundary-domain integral method for elliptic systems78818UNISA