01102nam--2200361---45--9900003473302033160-8493-0641-80034733USA010034733(ALEPH)000034733USA01003473320010301d1996----km-y0ITAy0103-------baENGUSHandbook of Biological effects of electromagnetic fieldsedited by Charles Polk, Elliot Postow2nd edBoston [etc.]CRC Presscopyr. 1996618 p.ill.30 cm.2001Campo elettromagneticoEffetti fisiologiciManuali574.19Polk,CharlesPostow,ElliotITACBSISBD990000347330203316574.19 HANCBS 0026061574.1900104569BKSCIALANDI9020010301USA01102120020403USA011642PATRY9020040406USA011624Handbook of Biological effects of electromagnetic fields878684UNISA02312oam 2200577 450 99646685770331620220601114643.03-540-68521-910.1007/978-3-540-68521-0(CKB)1000000000437316(SSID)ssj0000324886(PQKBManifestationID)12124433(PQKBTitleCode)TC0000324886(PQKBWorkID)10322481(PQKB)11216380(DE-He213)978-3-540-68521-0(MiAaPQ)EBC3088526(MiAaPQ)EBC6485915(PPN)155184598(EXLCZ)99100000000043731620210714d1998 uy 0engurnn#008mamaatxtccrModel theory and algebraic geometry an introduction to E. Hrushovski's proof of the geometric Mordell-Lang conjecture /Elisabeth Bouscaren, editor1st ed. 1998.Berlin ;Heidelberg :Springer Verlag,[1998]©19981 online resource (XVI, 216 p.)Lecture Notes in Mathematics,0075-8434 ;1696Bibliographic Level Mode of Issuance: Monograph3-540-64863-1 Includes bibliographical references at the end of each chapters and index.to model theory -- to stability theory and Morley rank -- Omega-stable groups -- Model theory of algebraically closed fields -- to abelian varieties and the Mordell-Lang conjecture -- The model-theoretic content of Lang’s conjecture -- Zariski geometries -- Differentially closed fields -- Separably closed fields -- Proof of the Mordell-Lang conjecture for function fields -- Proof of Manin’s theorem by reduction to positive characteristic.Lecture Notes in Mathematics,0075-8434 ;1696Arithmetical algebraic geometryTextbooksModel theoryArithmetical algebraic geometryModel theory.516.3503C60mscBouscaren Elisabeth1956-MiAaPQMiAaPQUtOrBLWBOOK996466857703316Model theory and algebraic geometry78161UNISA