02438nam 2200565 450 99646676100331620220910234909.03-540-35711-410.1007/BFb0067708(CKB)1000000000438120(SSID)ssj0000326240(PQKBManifestationID)12124344(PQKBTitleCode)TC0000326240(PQKBWorkID)10296423(PQKB)11299728(DE-He213)978-3-540-35711-7(MiAaPQ)EBC5592684(Au-PeEL)EBL5592684(OCoLC)1066183843(MiAaPQ)EBC6842416(Au-PeEL)EBL6842416(PPN)155229702(EXLCZ)99100000000043812020220910d1978 uy 0engurnn|008mamaatxtccrThe representation theory of the symmetric group /G. D. James1st ed. 1978.Berlin, Germany :Springer,[1978]©19781 online resource (VIII, 160 p.) Lecture Notes in Mathematics,0075-8434 ;682Bibliographic Level Mode of Issuance: Monograph3-540-08948-9 Background from representation theory -- The symmetric group -- Diagrams, tableaux and tabloids -- Specht modules -- Examples -- The character table of -- The garnir relations -- The standard basis of the specht module -- The branching theorem -- p-regular partitions -- The irreducible representations of -- Composition factors -- Semistandard homomorphisms -- Young’s rule -- Sequences -- The Littlewood-richardson rule -- A specht series for M? -- Hooks and skew-hooks -- The determinantal form -- The hook formula for dimensions -- The murnaghan-nakayama rule -- Binomial coefficients -- Some irreducible specht modules -- On the decomposition matrices of -- Young’s orthogonal form -- Representations of the general linear group.Lecture Notes in Mathematics,0075-8434 ;682Representations of groupsRepresentations of groups.512.2James G. D(Gordon Douglas),1945-1167396MiAaPQMiAaPQMiAaPQBOOK996466761003316The representation theory of the symmetric group2909879UNISA