04044nam 22006855 450 99646672010331620200706014709.01-280-38481-697866135627393-540-89793-310.1007/978-3-540-89793-4(CKB)1000000000773180(SSID)ssj0000319196(PQKBManifestationID)11243816(PQKBTitleCode)TC0000319196(PQKBWorkID)10337574(PQKB)11720577(DE-He213)978-3-540-89793-4(MiAaPQ)EBC3064379(PPN)136309763(EXLCZ)99100000000077318020100301d2009 u| 0engurnn|008mamaatxtccrNoncommutative Spacetimes[electronic resource] Symmetries in Noncommutative Geometry and Field Theory /by Paolo Aschieri, Marija Dimitrijevic, Petr Kulish, Fedele Lizzi, Julius Wess1st ed. 2009.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,2009.1 online resource (XIV, 199 p. 10 illus.) Lecture Notes in Physics,0075-8450 ;774Bibliographic Level Mode of Issuance: Monograph3-540-89792-5 Includes bibliographical references and index.Deformed Field Theory: Physical Aspects -- Differential Calculus and Gauge Transformations on a Deformed Space -- Deformed Gauge Theories -- Einstein Gravity on Deformed Spaces -- Deformed Gauge Theory: Twist Versus Seiberg#x2013;Witten Approach -- Another Example of Noncommutative Spaces: #x03BA;-Deformed Space -- Noncommutative Geometries: Foundations and Applications -- Noncommutative Spaces -- Quantum Groups, Quantum Lie Algebras, and Twists -- Noncommutative Symmetries and Gravity -- Twist Deformations of Quantum Integrable Spin Chains -- The Noncommutative Geometry of Julius Wess.There are many approaches to noncommutative geometry and to its use in physics. This volume addresses the subject by combining the deformation quantization approach, based on the notion of star-product, and the deformed quantum symmetries methods, based on the theory of quantum groups. The aim of this work is to give an introduction to this topic and to prepare the reader to enter the research field quickly. The order of the chapters is "physics first": the mathematics follows from the physical motivations (e.g. gauge field theories) in order to strengthen the physical intuition. The new mathematical tools, in turn, are used to explore further physical insights. A last chapter has been added to briefly trace Julius Wess' (1934-2007) seminal work in the field.Lecture Notes in Physics,0075-8450 ;774PhysicsGroup theoryQuantum physicsMathematical Methods in Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/P19013Group Theory and Generalizationshttps://scigraph.springernature.com/ontologies/product-market-codes/M11078Quantum Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/P19080Physics.Group theory.Quantum physics.Mathematical Methods in Physics.Group Theory and Generalizations.Quantum Physics.530.15636Aschieri Paoloauthttp://id.loc.gov/vocabulary/relators/aut1064504Dimitrijevic Marijaauthttp://id.loc.gov/vocabulary/relators/autKulish Petrauthttp://id.loc.gov/vocabulary/relators/autLizzi Fedeleauthttp://id.loc.gov/vocabulary/relators/autWess Juliusauthttp://id.loc.gov/vocabulary/relators/autBOOK996466720103316Noncommutative Spacetimes2538645UNISA