04856nam 22007455 450 99646666350331620200701010914.03-642-23669-310.1007/978-3-642-23669-3(CKB)3390000000021680(SSID)ssj0000609363(PQKBManifestationID)11433923(PQKBTitleCode)TC0000609363(PQKBWorkID)10625703(PQKB)11413119(DE-He213)978-3-642-23669-3(MiAaPQ)EBC3070395(PPN)159084725(EXLCZ)99339000000002168020120104d2012 u| 0engurnn|008mamaatxtccrComplex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics[electronic resource] /edited by Vincent Guedj1st ed. 2012.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,2012.1 online resource (VIII, 310 p. 4 illus.) Lecture Notes in Mathematics,0075-8434 ;2038Bibliographic Level Mode of Issuance: Monograph3-642-23668-5 Includes bibliographical references.1.Introduction -- I. The Local Homogenious Dirichlet Problem.-2. Dirichlet Problem in Domains of Cn -- 3. Geometric Maximality -- II. Stochastic Analysis for the Monge-Ampère Equation -- 4. Probabilistic Approach to Regularity -- III. Monge-Ampère Equations on Compact Manifolds -- 5.The Calabi-Yau Theorem -- IV Geodesics in the Space of Kähler Metrics -- 6. The Riemannian Space of Kähler Metrics -- 7. MA Equations on Manifolds with Boundary -- 8. Bergman Geodesics.The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary). These operators are of central use in several fundamental problems of complex differential geometry (Kähler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson). Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis.Lecture Notes in Mathematics,0075-8434 ;2038Functions of complex variablesDifferential geometryPartial differential equationsAlgebraic geometrySeveral Complex Variables and Analytic Spaceshttps://scigraph.springernature.com/ontologies/product-market-codes/M12198Differential Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M21022Partial Differential Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12155Algebraic Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M11019Aufsatzsammlung.Functions of complex variables.Differential geometry.Partial differential equations.Algebraic geometry.Several Complex Variables and Analytic Spaces.Differential Geometry.Partial Differential Equations.Algebraic Geometry.515/.7242SI 850rvkMAT 146fstubMAT 322fstubMAT 354fstubMAT 537fstub510sdnbGuedj Vincentedthttp://id.loc.gov/vocabulary/relators/edtBOOK996466663503316Complex Monge–Ampère equations and geodesics in the space of Kähler metrics1417443UNISA