03804nam 22006855 450 99646664940331620200705234934.03-319-20547-110.1007/978-3-319-20547-2(CKB)4210000000000432(SSID)ssj0001585198(PQKBManifestationID)16265540(PQKBTitleCode)TC0001585198(PQKBWorkID)14866511(PQKB)10388909(DE-He213)978-3-319-20547-2(MiAaPQ)EBC6296997(MiAaPQ)EBC5587471(Au-PeEL)EBL5587471(OCoLC)921124129(PPN)188569332(EXLCZ)99421000000000043220150907d2015 u| 0engurnn|008mamaatxtccrInfinity Properads and Infinity Wheeled Properads[electronic resource] /by Philip Hackney, Marcy Robertson, Donald Yau1st ed. 2015.Cham :Springer International Publishing :Imprint: Springer,2015.1 online resource (XV, 358 p. 213 illus.) Lecture Notes in Mathematics,0075-8434 ;2147Bibliographic Level Mode of Issuance: Monograph3-319-20546-3 Includes bibliographical references and index.Introduction -- Graphs -- Properads -- Symmetric Monoidal Closed Structure on Properads -- Graphical Properads -- Properadic Graphical Category -- Properadic Graphical Sets and Infinity Properads -- Fundamental Properads of Infinity Properads -- Wheeled Properads and Graphical Wheeled Properads -- Infinity Wheeled Properads -- What's Next?.The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures.   The text extends both the Joyal-Lurie approach to higher categories and the Cisinski-Moerdijk-Weiss approach to higher operads, and provides a foundation for a broad study of the homotopy theory of properads. This work also serves as a complete guide to the generalised graphs which are pervasive in the study of operads and properads. A preliminary list of potential applications and extensions comprises the final chapter.   Infinity Properads and Infinity Wheeled Properads is written for mathematicians in the fields of topology, algebra, category theory, and related areas. It is written roughly at the second year graduate level, and assumes a basic knowledge of category theory.Lecture Notes in Mathematics,0075-8434 ;2147Algebraic topologyCategory theory (Mathematics)Homological algebraAlgebraic Topologyhttps://scigraph.springernature.com/ontologies/product-market-codes/M28019Category Theory, Homological Algebrahttps://scigraph.springernature.com/ontologies/product-market-codes/M11035Algebraic topology.Category theory (Mathematics).Homological algebra.Algebraic Topology.Category Theory, Homological Algebra.512.55Hackney Philipauthttp://id.loc.gov/vocabulary/relators/aut716389Robertson Marcyauthttp://id.loc.gov/vocabulary/relators/autYau Donaldauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK996466649403316Infinity Properads and Infinity Wheeled Properads2273100UNISA01762nem 2200469Ia 450 991070195400332120120718124403.0(CKB)5470000002422578(OCoLC)800410089(EXLCZ)99547000000242257820120718d2011 ca engb|||||||||||||||||||||durcn|||||||||crdrdacontentcrdamediacrrdacarrierSurface materials maps of Afghanistan[electronic resource] carbonates, phyllosilicates, sulfates, altered minerals, and other materials /by Raymond F. Kokaly ... [and others] ; prepared in cooperation with the Afghanistan Ministry of Mines and Industries[Reston, Va.] :U.S. Dept., of the Interior, U.S. Geological Survey,2011.1 online resource (1 map) colorScientific investigations map ;3152-AUSGS Afganistan project product ;no. 190Title from title screen (viewed July 18, 2012).Relief shown by shading.Includes text and index map.Includes bibliographical references.Surface materials maps of Afghanistan Mines and mineral resourcesAfghanistanMapsAfghanistanMapsMaps.lcgftMines and mineral resourcesKokaly Raymond F1381536Geological Survey (U.S.)Afghanistan.Vizārat-i Maʻādin va Ṣanāʼiʻ.GPOGPOBOOK9910701954003321Surface materials maps of Afghanistan3546380UNINA