02811nam 2200589 450 99646664570331620220423135917.01-280-63516-997866106351603-540-33028-310.1007/b134090(CKB)1000000000282951(SSID)ssj0000105913(PQKBManifestationID)11132759(PQKBTitleCode)TC0000105913(PQKBWorkID)10106005(PQKB)10952575(DE-He213)978-3-540-33028-8(MiAaPQ)EBC4643104(MiAaPQ)EBC6694715(Au-PeEL)EBL6694715(PPN)123132630(EXLCZ)99100000000028295120220423d2006 uy 0engurnn|008mamaatxtccrThe art of random walks /Andrs Telcs1st ed. 2006.Berlin ;Heidelberg :Springer,[2006]℗♭20061 online resource (VII, 200 p.) Lecture Notes in Mathematics,0075-8434 ;1885Bibliographic Level Mode of Issuance: Monograph3-540-33027-5 Includes bibliographical references and index.Potential theory and isoperimetric inequalities -- Basic definitions and preliminaries -- Some elements of potential theory -- Isoperimetric inequalities -- Polynomial volume growth -- Local theory -- Motivation of the local approach -- Einstein relation -- Upper estimates -- Lower estimates -- Two-sided estimates -- Closing remarks -- Parabolic Harnack inequality -- Semi-local theory.Einstein proved that the mean square displacement of Brownian motion is proportional to time. He also proved that the diffusion constant depends on the mass and on the conductivity (sometimes referred to Einstein’s relation). The main aim of this book is to reveal similar connections between the physical and geometric properties of space and diffusion. This is done in the context of random walks in the absence of algebraic structure, local or global spatial symmetry or self-similarity. The author studies the heat diffusion at this general level and discusses the following topics: The multiplicative Einstein relation, Isoperimetric inequalities, Heat kernel estimates Elliptic and parabolic Harnack inequality. .Lecture Notes in Mathematics,0075-8434 ;1885Random walks (Mathematics)Random walks (Mathematics)519.282Telcs Andrs1221982MiAaPQMiAaPQMiAaPQBOOK996466645703316The art of random walks2833875UNISA