02749nam 2200685 450 99646662240331620220511133116.03-540-47021-210.1007/BFb0090185(CKB)1000000000437113(SSID)ssj0000325813(PQKBManifestationID)12097358(PQKBTitleCode)TC0000325813(PQKBWorkID)10266153(PQKB)10547770(DE-He213)978-3-540-47021-2(MiAaPQ)EBC5610751(MiAaPQ)EBC6692842(Au-PeEL)EBL5610751(OCoLC)1078993550(Au-PeEL)EBL6692842(PPN)155170112(EXLCZ)99100000000043711320220422d1992 uy 0engurnn#008mamaatxtccrPrimality testing and Abelian varieties over finite fields /Leonard M. Adleman, Ming-Deh A. Huang1st ed. 1992.Berlin, Heidelberg :Springer-Verlag,[1992]©19921 online resource (VIII, 144 p.)Lecture Notes in Mathematics ;1512Bibliographic Level Mode of Issuance: Monograph0-387-55308-8 3-540-55308-8 Acknowledgement -- Overview of the algorithm and the proof of the main theorem -- Reduction of main theorem to three propositions -- Proof of proposition 1 -- Proof of proposition 2 -- Proof of proposition 3.From Gauss to G|del, mathematicians have sought an efficient algorithm to distinguish prime numbers from composite numbers. This book presents a random polynomial time algorithm for the problem. The methods used are from arithmetic algebraic geometry, algebraic number theory and analyticnumber theory. In particular, the theory of two dimensional Abelian varieties over finite fields is developed. The book will be of interest to both researchers and graduate students in number theory and theoretical computer science.Lecture notes in mathematics (Springer-Verlag) ;1512.Numbers, PrimeAbelian varietiesFinite fields (Algebra)Numbers, Prime.Abelian varieties.Finite fields (Algebra)512.7214K15msc11A51msc68Q25mscAdleman Leonard M.59541Huang Ming-Deh A.MiAaPQMiAaPQMiAaPQBOOK996466622403316Primality testing and abelian varieties over finite fields262300UNISA