01192nam2-2200385---450-99000333100020331620091012102535.00-691-00096-4000333100USA01000333100(ALEPH)000333100USA0100033310020091012d1993----km-y0itay50------baengUSy---||||001yyCommensurabilities among lattices in PU (1, n)Pierre Deligne and G. Daniel MostowPrincentonPrincenton university presscopyr. 1993183 p.24 cmAnnals of mathematics studies1320010003153552001Annals of mathematics studies132FunzioniMatematica515.25DELIGNE,Pierre42896MOSTOW,G. Daniel606388ITsalbcISBD990003331000203316510 AMSP 13237887/CBS51000218093BKSCIRSIAV69020091012USA011023RSIAV69020091012USA011025Commensurabilities among lattices in PU (1, n1120674UNISA03194nam 2200661 450 99646659990331620220909121741.03-540-47628-810.1007/BFb0086765(CKB)1000000000437144(SSID)ssj0000322609(PQKBManifestationID)12091386(PQKBTitleCode)TC0000322609(PQKBWorkID)10287690(PQKB)11578258(DE-He213)978-3-540-47628-3(MiAaPQ)EBC5585062(Au-PeEL)EBL5585062(OCoLC)1066179020(MiAaPQ)EBC6842260(Au-PeEL)EBL6842260(PPN)155229427(EXLCZ)99100000000043714420220909d1993 uy 0engurnn#008mamaatxtccrDifferential topology of complex surfaces elliptic surfaces with Pg = 1 : smooth classification /John W. Morgan and Kieran G. O'Grady1st ed. 1993.Berlin, Germany ;New York, New York :Springer-Verlag,[1993]©19931 online resource (VII, 224 p.)Lecture Notes in Mathematics,0075-8434 ;1545Bibliographic Level Mode of Issuance: Monograph0-387-56674-0 3-540-56674-0 Unstable polynomials of algebraic surfaces -- Identification of ?3,r (S, H) with ?3(S) -- Certain moduli spaces for bundles on elliptic surfaces with p g = 1 -- Representatives for classes in the image of the ?-map -- The blow-up formula -- The proof of Theorem 1.1.1.This book is about the smooth classification of a certain class of algebraicsurfaces, namely regular elliptic surfaces of geometric genus one, i.e. elliptic surfaces with b1 = 0 and b2+ = 3. The authors give a complete classification of these surfaces up to diffeomorphism. They achieve this result by partially computing one of Donalson's polynomial invariants. The computation is carried out using techniques from algebraic geometry. In these computations both thebasic facts about the Donaldson invariants and the relationship of the moduli space of ASD connections with the moduli space of stable bundles are assumed known. Some familiarity with the basic facts of the theory of moduliof sheaves and bundles on a surface is also assumed. This work gives a good and fairly comprehensive indication of how the methods of algebraic geometry can be used to compute Donaldson invariants.Lecture Notes in Mathematics,0075-8434 ;1545Elliptic surfacesDifferential topologyGeometry, DifferentialElliptic surfaces.Differential topology.Geometry, Differential.514.3457R50mscMorgan John1946 March 21-57422O'Grady Kieran G.1958-MiAaPQMiAaPQMiAaPQBOOK996466599903316Differential topology of complex surfaces262385UNISA