00758cam0 2200241 450 E60020006978420200504082932.020101207d1986 |||||ita|0103 baitaITPagine scelte da Max SchelerFranco BosioRomaEditrice Ianua1986120 p.21 cmBosio, FrancoA600200060756070159270ITUNISOB20200504RICAUNISOBUNISOB10063620E600200069784M 102 Monografia moderna SBNM100006068Si63620acquistopregresso2UNISOBUNISOB20101207111131.020200504082903.0SpinosaPagine scelte da Max Scheler1700613UNISOB03511nam 22005295 450 99646655080331620240215145033.09783030895402(electronic bk.)978303089539610.1007/978-3-030-89540-2(MiAaPQ)EBC6886997(Au-PeEL)EBL6886997(CKB)21167559800041(DE-He213)978-3-030-89540-2(PPN)260825557(EXLCZ)992116755980004120220210d2021 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierRelative Nonhomogeneous Koszul Duality[electronic resource] /by Leonid Positselski1st ed. 2021.Cham :Springer International Publishing :Imprint: Birkhäuser,2021.1 online resource (303 pages)Frontiers in Mathematics,1660-8054Print version: Positselski, Leonid Relative Nonhomogeneous Koszul Duality Cham : Springer International Publishing AG,c2022 9783030895396 Includes bibliographical references.Preface -- Prologue -- Introduction -- Homogeneous Quadratic Duality over a Base Ring -- Flat and Finitely Projective Koszulity -- Relative Nonhomogeneous Quadratic Duality -- The Poincare-Birkhoff-Witt Theorem -- Comodules and Contramodules over Graded Rings -- Relative Nonhomogeneous Derived Koszul Duality: the Comodule Side -- Relative Nonhomogeneous Derived Koszul Duality: the Contramodule Side -- The Co-Contra Correspondence -- Koszul Duality and Conversion Functor -- Examples -- References.This research monograph develops the theory of relative nonhomogeneous Koszul duality. Koszul duality is a fundamental phenomenon in homological algebra and related areas of mathematics, such as algebraic topology, algebraic geometry, and representation theory. Koszul duality is a popular subject of contemporary research. This book, written by one of the world's leading experts in the area, includes the homogeneous and nonhomogeneous quadratic duality theory over a nonsemisimple, noncommutative base ring, the Poincare–Birkhoff–Witt theorem generalized to this context, and triangulated equivalences between suitable exotic derived categories of modules, curved DG comodules, and curved DG contramodules. The thematic example, meaning the classical duality between the ring of differential operators and the de Rham DG algebra of differential forms, involves some of the most important objects of study in the contemporary algebraic and differential geometry. For the first time in the history of Koszul duality the derived D-\Omega duality is included into a general framework. Examples highly relevant for algebraic and differential geometry are discussed in detail.Frontiers in Mathematics,1660-8054Algebra, HomologicalCategory Theory, Homological AlgebraTeoria de la dualitat (Matemàtica)thubLlibres electrònicsthubAlgebra, Homological.Category Theory, Homological Algebra.Teoria de la dualitat (Matemàtica)515.782Positselski Leonid1973-499475MiAaPQMiAaPQMiAaPQ996466550803316Relative Nonhomogeneous Koszul Duality2644851UNISA