03553nam 22006015 450 99646652320331620200701024508.03-540-85031-710.1007/978-3-540-85031-1(CKB)1000000000546308(SSID)ssj0000447003(PQKBManifestationID)11268015(PQKBTitleCode)TC0000447003(PQKBWorkID)10504819(PQKB)11568267(DE-He213)978-3-540-85031-1(MiAaPQ)EBC3063555(PPN)131119095(EXLCZ)99100000000054630820100301d2009 u| 0engurnn|008mamaatxtccrA Nonlinear Transfer Technique for Renorming[electronic resource] /by Aníbal Moltó, José Orihuela, Stanimir Troyanski, Manuel Valdivia1st ed. 2009.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,2009.1 online resource (XI, 148 p.) Lecture Notes in Mathematics,0075-8434 ;1951ISSN 0075-8434 for print edition.3-540-85030-9 Includes bibliographical references and index.?-Continuous and Co-?-continuous Maps -- Generalized Metric Spaces and Locally Uniformly Rotund Renormings -- ?-Slicely Continuous Maps -- Some Applications -- Some Open Problems.Abstract topological tools from generalized metric spaces are applied in this volume to the construction of locally uniformly rotund norms on Banach spaces. The book offers new techniques for renorming problems, all of them based on a network analysis for the topologies involved inside the problem. Maps from a normed space X to a metric space Y, which provide locally uniformly rotund renormings on X, are studied and a new frame for the theory is obtained, with interplay between functional analysis, optimization and topology using subdifferentials of Lipschitz functions and covering methods of metrization theory. Any one-to-one operator T from a reflexive space X into c0 (T) satisfies the authors' conditions, transferring the norm to X. Nevertheless the authors' maps can be far from linear, for instance the duality map from X to X* gives a non-linear example when the norm in X is Fréchet differentiable. This volume will be interesting for the broad spectrum of specialists working in Banach space theory, and for researchers in infinite dimensional functional analysis.Lecture Notes in Mathematics,0075-8434 ;1951Differential geometryFunctional analysisDifferential Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M21022Functional Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M12066Differential geometry.Functional analysis.Differential Geometry.Functional Analysis.516.36Moltó Aníbalauthttp://id.loc.gov/vocabulary/relators/aut602761Orihuela Joséauthttp://id.loc.gov/vocabulary/relators/autTroyanski Stanimirauthttp://id.loc.gov/vocabulary/relators/autValdivia Manuelauthttp://id.loc.gov/vocabulary/relators/autBOOK996466523203316Nonlinear transfer technique for renorming1014875UNISA