01190nam0-22003611i-450-99000462657040332120110912163405.0000462657FED01000462657(Aleph)000462657FED0100046265719990604g19521957km-y0itay50------bagerDEy-------001eyBriefeJohann Joachim Winckelmannin Verbindung mit Hans Diepolder hrsg. von Walther RehmBerlinde Gruyter1952-19574 v.24 cm1.: 1742-1759. - 19522.: 1759-1763. - 19523.: 1764-1768. - 19564.: Dokumente zur Lebengeschichte. - 1957930.1Winckelmann,Johann Joachim<1717-1768>7211Diepolder,HansRehm,WaltherITUNINARICAUNIMARCBK990004626570403321930.1 WIN 1 (1)Bibl.33756FLFBC930.1 WIN 1 (2)Bibl.33757FLFBCP2D-WINCKELMANN J.J. (3)-1956Bibl.33758FLFBCP2D-WINCKELMANN J.J. (4)-1957Bibl.33759FLFBCFLFBCBriefe552636UNINA03287nam 2200625 450 99646650840331620220912132718.03-540-39150-910.1007/BFb0082943(CKB)1000000000437496(SSID)ssj0000323551(PQKBManifestationID)12065011(PQKBTitleCode)TC0000323551(PQKBWorkID)10300451(PQKB)11053453(DE-He213)978-3-540-39150-0(MiAaPQ)EBC5585230(Au-PeEL)EBL5585230(OCoLC)1066195631(MiAaPQ)EBC6842515(Au-PeEL)EBL6842515(PPN)155231286(EXLCZ)99100000000043749620220912d1988 uy 0engurnn|008mamaatxtccrGlobal bifurcation of periodic solutions with symmetry /Bernold Fiedler1st ed. 1988.Berlin, Germany ;New York, New York :Springer-Verlag,[1988]©19881 online resource (X, 154 p.) Lecture Notes in Mathematics,0075-8434 ;1309Bibliographic Level Mode of Issuance: Monograph3-540-19234-4 Main results -- No symmetry — a survey -- Virtual symmetry -- Generic local theory -- Generic global theory -- General global theory -- Applications -- Discussion -- Appendix on genericity.This largely self-contained research monograph addresses the following type of questions. Suppose one encounters a continuous time dynamical system with some built-in symmetry. Should one expect periodic motions which somehow reflect this symmetry? And how would periodicity harmonize with symmetry? Probing into these questions leads from dynamics to topology, algebra, singularity theory, and to many applications. Within a global approach, the emphasis is on periodic motions far from equilibrium. Mathematical methods include bifurcation theory, transversality theory, and generic approximations. A new homotopy invariant is designed to study the global interdependence of symmetric periodic motions. Besides mathematical techniques, the book contains 5 largely nontechnical chapters. The first three outline the main questions, results and methods. A detailed discussion pursues theoretical consequences and open problems. Results are illustrated by a variety of applications including coupled oscillators and rotating waves: these links to such disciplines as theoretical biology, chemistry, fluid dynamics, physics and their engineering counterparts make the book directly accessible to a wider audience.Lecture Notes in Mathematics,0075-8434 ;1309Singularities (Mathematics)Nonlinear operatorsBifurcation theorySingularities (Mathematics)Nonlinear operators.Bifurcation theory.515Fiedler Bernold1956-56771MiAaPQMiAaPQMiAaPQBOOK996466508403316Global bifurcation of periodic solutions with symmetry78557UNISA