02145nam 2200625 450 991046501750332120200520144314.01-282-76720-8978661276720387-92329-05-5(CKB)3390000000012561(EBL)3400118(SSID)ssj0001152221(PQKBManifestationID)11748322(PQKBTitleCode)TC0001152221(PQKBWorkID)11145251(PQKB)10319846(MiAaPQ)EBC3400118(Au-PeEL)EBL3400118(CaPaEBR)ebr10822786(CaONFJC)MIL276720(OCoLC)729021417(EXLCZ)99339000000001256120140111h20082008 uy| 0engur|n|---|||||txtccrAerospace technologies and applications for dual use a new world of defense and commercial in 21st century security /General Pietro Finocchio, Prof. Ramjee Prasad, Prof. Marina RuggieriAalborg, Denmark :River Publishers,[2008]©20081 online resource (310 p.)River Publishers series in communicationsDescription based upon print version of record.87-92329-04-7 Includes bibliographical references and index.part 1. Trends and challenges in aerospace dual use -- part 2. Dual use technologies -- part 3. Dual use applications -- part 4. Industry outlook on dual use.AeronauticsCongressesAstronauticsCongressesAerospace engineeringCongressesElectronic books.AeronauticsAstronauticsAerospace engineeringFinocchio Pietro973536Prasad Ramjee534854Ruggieri Marina973537MiAaPQMiAaPQMiAaPQBOOK9910465017503321Aerospace technologies and applications for dual use2214964UNINA03090nam 22006615 450 99646650360331620200701071831.03-642-18460-X10.1007/978-3-642-18460-4(CKB)2670000000076217(SSID)ssj0000506039(PQKBManifestationID)11341135(PQKBTitleCode)TC0000506039(PQKBWorkID)10513775(PQKB)10567513(DE-He213)978-3-642-18460-4(MiAaPQ)EBC3066566(PPN)151591350(EXLCZ)99267000000007621720110317d2011 u| 0engurnn|008mamaatxtccrBlow-up Theories for Semilinear Parabolic Equations[electronic resource] /by Bei Hu1st ed. 2011.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,2011.1 online resource (X, 127 p. 2 illus.) Lecture Notes in Mathematics,0075-8434 ;2018Bibliographic Level Mode of Issuance: Monograph3-642-18459-6 Includes bibliographical references and index.1 Introduction -- 2 A review of elliptic theories -- 3 A review of parabolic theories -- 4 A review of fixed point theorems.-5 Finite time Blow-up for evolution equations -- 6 Steady-State solutions -- 7 Blow-up rate -- 8 Asymptotically self-similar blow-up solutions -- 9 One space variable case.There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the methods; these methods very often apply to more general equations.Lecture Notes in Mathematics,0075-8434 ;2018Partial differential equationsApplied mathematicsEngineering mathematicsMathematical analysisAnalysis (Mathematics)Partial Differential Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12155Applications of Mathematicshttps://scigraph.springernature.com/ontologies/product-market-codes/M13003Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M12007Partial differential equations.Applied mathematics.Engineering mathematics.Mathematical analysis.Analysis (Mathematics).Partial Differential Equations.Applications of Mathematics.Analysis.515.3534Hu Beiauthttp://id.loc.gov/vocabulary/relators/aut344906BOOK996466503603316Blow-up theories for semilinear parabolic equations261813UNISA