00782nam0-22002891i-450-99000269938040332120080304131835.0000269938FED01000269938(Aleph)000269938FED0100026993820030910d1983----km-y0itay50------baengUSy-------001yyAccounting principlesRobert N. Anthony, James S. Reece5th ed.HomewoodIrwin1983Anthony,Robert Newton<1916-2006>106821Reece,James S.306791ITUNINARICAUNIMARCBK9900026993804033213-2-27057ECAECAAccounting principles428947UNINA02966nam 22006135 450 99646649060331620200701215108.03-540-39680-210.1007/b93836(CKB)1000000000230851(SSID)ssj0000323643(PQKBManifestationID)11247955(PQKBTitleCode)TC0000323643(PQKBWorkID)10304235(PQKB)10715832(DE-He213)978-3-540-39680-2(MiAaPQ)EBC5595888(EXLCZ)99100000000023085120150519d2003 u| 0engurnn|008mamaatxtccrGröbner Bases and the Computation of Group Cohomology[electronic resource] /by David J. Green1st ed. 2003.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,2003.1 online resource (XII, 144 p.) Lecture Notes in Mathematics,0075-8434 ;1828Bibliographic Level Mode of Issuance: Monograph3-540-20339-7 Includes bibliographical references (pages [133]-135) and index.Introduction -- Part I Constructing minimal resolutions: Bases for finite-dimensional algebras and modules; The Buchberger Algorithm for modules; Constructing minimal resolutions -- Part II Cohomology ring structure: Gröbner bases for graded commutative algebras; The visible ring structure; The completeness of the presentation -- Part III Experimental results: Experimental results -- A. Sample cohomology calculations -- Epilogue -- References -- Index.This monograph develops the Gröbner basis methods needed to perform efficient state of the art calculations in the cohomology of finite groups. Results obtained include the first counterexample to the conjecture that the ideal of essential classes squares to zero. The context is J. F. Carlson’s minimal resolutions approach to cohomology computations.Lecture Notes in Mathematics,0075-8434 ;1828Group theoryAssociative ringsRings (Algebra)Group Theory and Generalizationshttps://scigraph.springernature.com/ontologies/product-market-codes/M11078Associative Rings and Algebrashttps://scigraph.springernature.com/ontologies/product-market-codes/M11027Group theory.Associative rings.Rings (Algebra).Group Theory and Generalizations.Associative Rings and Algebras.510Green David Jauthttp://id.loc.gov/vocabulary/relators/aut151082MiAaPQMiAaPQMiAaPQBOOK996466490603316Gröbner bases and the computation of group cohomology253278UNISA