11077nam 2200613 450 99646640930331620230621192920.03-030-75421-9(CKB)4950000000280048(MiAaPQ)EBC6787294(Au-PeEL)EBL6787294(OCoLC)1281969980(PPN)258296968(EXLCZ)99495000000028004820220714d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierRationality of varieties /Gavril Farkas [and three others], editorsCham, Switzerland :Birkhäuser,[2021]©20211 online resource (440 pages)Progress in mathematics ;Volume 3423-030-75420-0 Includes bibliographical references.Intro -- Contents -- Rationality of Algebraic Varieties -- On Geometry of Fano Threefold Hypersurfaces -- 1. Introduction -- 2. Non-solid Fano threefolds -- 3. Birationally non-rigid Fano threefolds -- 3.1. How to read off the equation of Z? -- 4. Evidence for Conjecture 1.4 -- Acknowledgement -- References -- On the Image of the Second l-adic Bloch Map -- Introduction -- 0.1. Mazur's question with Q-coefficients -- 0.2. Mazur's question with Q-coefficients in positive characteristic -- 0.3. Mazur's question with Z-coefficients -- 0.4. Universal cycles and the image of the second l-adic Bloch map -- 0.5. Decomposition of the diagonal and the image of the second l-adic Bloch map -- 0.6. Stably rational vs. geometrically stably rational varieties over finite fields -- 0.7. Notation and conventions -- 1. On various notions of coniveau filtrations -- 1.1. Recalling the geometric coniveau filtrations -- 1.2. p-adic coniveau filtrations -- 2. The image of the l-adic Bloch map and the coniveau filtration -- 2.1. The image of the -adic Bloch map -- 2.2. The image of the p-adic Bloch map -- 3. Decomposition of the diagonal, algebraic representatives,and miniversal cycles -- 3.1. Decomposition of the diagonal -- 3.2. Surjective regular homomorphisms and algebraic representatives -- 3.3. Miniversal cycles and miniversal cycles of minimal degree -- 3.4. Decomposition of the diagonal and algebraic representatives -- 4. Miniversal cycles and the image of the second l-adic Bloch map -- 5. Decomposition of the diagonal and the image of the second -adic Bloch map -- 6. Modeling cohomology via correspondences -- 6.1. Modeling Q-cohomology via correspondences -- 6.2. Modeling Z-cohomology via correspondences: Theorem 15 -- 7. The image of the -adic Bloch map in characteristic 0 -- Appendix: A review of the l-adic Bloch map.A.1. Conventions for -adic and p-adic cohomology -- A.1.1. -adic cohomology -- A.1.2. p-adic cohomology -- A.2. The -adic Bloch map -- A.2.1. The Abel-Jacobi map on torsion -- A.2.2. Bloch's preliminaries -- A.2.3. The -Bloch map -- A.2.4. Bloch's Key Lemma -- A.2.5. The -adic Bloch map -- A.2.6. The Bloch map -- A.3. Suwa's construction of the l-adic Bloch map -- A.3.1. Structure of abelian l-primary torsion groups -- A.3.2. -adic cohomology from cohomology with torsion coefficients -- A.3.3. Suwa's -adic Bloch map -- A.3.4. The -adic Bloch map and Suwa's construction -- A.3.5. Gross-Suwa's p-adic Bloch map -- A.4. Properties of the Bloch maps -- A.5. Restriction of the Bloch map to algebraically trivial cycle classes -- Acknowledgment -- References -- Rational Curves and MBM Classes on Hyperkähler Manifolds: A Survey -- 1. Introduction -- 2. MBM classes: equivalent definitions and basic properties -- 2.1. Deforming rational curves: first remarks -- 2.2. Parameter spaces for hyperkähler manifolds -- 2.3. MBM classes -- 3. Results on MBM classes and applications -- 3.1. Markman's Torelli theorem and the birational cone conjecture -- 3.2. The cone conjecture via ergodic theory -- 3.3. Uniform boundedness and an appication -- 4. Contractibility and deformations -- 5. Classification of MBM classes in low dimension for K3 type -- 6. Some open questions -- Acknowledgement -- References -- Unirationality of Certain Universal Families of Cubic Fourfolds -- 1. Introduction -- 2. The existence of the universal cubic fourfold, and some properties of scrolls and associated K3 surfaces -- 3. Unirationality for C26,1 and C42,1 via universal K3 surfaces -- 4. Unirationality through rational special surfaces -- 4.1. Special cubics in Cd in the range 8d 38 -- 4.2. Special cubics in C42 -- 4.3. Unirationality of Cd,n -- 5. Some results of non-unirationality.5.1. Open questions -- Acknowledgement -- References -- A Categorical Invariant for Geometrically Rational Surfaces with a Conic Bundle Structure -- 1. Introduction -- Notations -- 2. Basics on geometrically rational surfaces -- 2.1. Elementary links -- 3. Basics on derived categories -- 3.1. Categorical representability -- 3.2. Conic bundles -- 4. Links of type I/III and the definition ofthe Griffiths-Kuznetsov component -- 5. Links of type II -- 6. Links of type IV -- Acknowledgment -- References -- Marked and Labelled Gushel-Mukai Fourfolds -- 1. Introduction -- 2. Gushel-Mukai fourfolds -- 2.1. Cohomology and period domain of Gushel-Mukai fourfolds -- 2.2. Hodge-special Gushel-Mukai fourfolds -- 3. Marked and labelled Gushel-Mukai fourfolds -- 4. Gushel-Mukai fourfolds with associated K3 surface -- 4.1. Rational maps to moduli spaces of K3 surfaces -- 4.2. Fibers of Fourier-Mukai partners -- 5. Gushel-Mukai fourfolds and twisted K3 surfaces -- 5.1. Moduli and periods of twisted K3 surfaces -- 5.2. Twisted K3 surfaces associated to GM fourfolds -- 5.3. Fourier-Mukai partners in the twisted case -- Acknowledgment -- References -- Supersingular Irreducible Symplectic Varieties -- 1. Introduction -- 2. Generalities on the notion of supersingularity -- 3. Supersingular symplectic varieties -- 4. Moduli spaces of stable sheaves on K3 surfaces -- 5. Moduli spaces of twisted sheaves on K3 surfaces -- 6. Moduli spaces of sheaves on abelian surfaces -- References -- Symbols and Equivariant Birational Geometry in Small Dimensions -- 1. Brief history of previous work -- 2. Equivariant birational types -- 2.1. Antisymmetry -- 2.2. Multiplication and co-multiplication -- 2.3. Birational invariant -- 3. Computation of invariants on surfaces -- 3.1. Sample computations of B2(Cp) -- 3.2. Examples for noncyclic groups -- 3.3. Linear actions yield torsion classes.3.4. Algebraic structure in dimension 2 -- 4. Reconstruction theorem -- 5. Refined invariants -- 5.1. Encoding fixed points -- 5.2. Encoding points with nontrivial stabilizer -- 5.3. Examples of blowup relations -- 5.4. Examples -- 5.5. Limitation of the birational invariant -- 5.6. Reprise: Cyclic groups on rational surfaces -- 6. Cubic fourfolds -- 7. Nonabelian invariants -- 7.1. The equivariant Burnside group -- 7.2. Resolution of singularities -- 7.3. The class of XG -- 7.4. Elementary observations -- 7.5. Dihedral group of order 12 -- 7.6. Embeddings of S3C2 into the Cremona group -- Acknowledgment -- References -- Rationality of Fano Threefolds of Degree 18 over Non-closed Fields -- 1. Introduction -- 2. Projection constructions -- 2.1. Projection from lines -- 2.2. Projection from conics -- 2.3. Projection from points -- 3. Unirationality constructions -- 3.1. Using a point -- 3.2. Using a point and a conic -- 4. Rationality results -- 5. Analysis of principal homogeneous spaces -- 5.1. Proof of Theorem 1 -- 5.2. A corollary to Theorem 1 -- 5.3. Generic behavior -- 5.4. Connections with complete intersections? -- Acknowledgment -- References -- Rationality of Mukai Varieties over Non-closed Fields -- 1. Introduction -- 2. A birational transformation given by a family of quadrics -- 2.1. The statement -- 2.2. The proof -- 2.3. Grassmannians of lines -- 2.4. Orthogonal Grassmannian -- 2.5. Grassmannian of the group G2 -- 3. Mukai varieties of genus 7, 8, and 10 -- 3.1. Forms of linear sections -- 3.2. Rationality of Mukai varieties -- 4. Mukai varieties of genus 9 -- 4.1. The statement -- 4.2. The proof -- 4.3. Implications for genus 9 Mukai varieties -- 5. Fano threefolds of genus 12 -- 5.1. Vector bundles and Grassmannian embedding -- 5.2. Birational transformation for `39`42`"613A``45`47`"603AGr(3,7).5.3. The induced transformation of threefolds -- Appendix: Application to cylinders -- Acknowledgment -- References -- A Refinement of the Motivic Volume, and Specialization of Birational Types -- 1. Introduction -- Terminology -- 2. The Grothendieck ring of varieties graded by dimension -- 2.1. Reminders on the Grothendieck ring of varieties -- 2.2. The graded Grothendieck ring -- 2.3. Birational types -- 2.4. A refinement of Bittner's presentation -- 2.5. A refinement of the theorem of Larsen &amp -- Lunts -- 3. Dimensional refinement of the motivic volume -- 3.1. The motivic volume -- 3.2. Strictly toroidal models -- 3.3. Construction of the motivic volume -- 4. Applications to rationality problems -- 4.1. Specialization of birational types -- 4.2. Obstruction to stable rationality -- 4.3. Examples -- 5. The monodromy action -- 5.1. The equivariant Grothendieck ring -- 5.2. The monodromy action on the motivic volume -- Acknowledgement -- References -- Explicit Rationality of Some Special Fano Fourfolds -- Introduction -- 1. Rationality via linear systems of hypersurfaces of degree 3e-1 having points of multiplicity e along a surface -- 1.1. Linear systems of quintics with double points along a general Sd -- 2. Birational maps to P4 for cubics in C14, C26 and C38 -- 3. Birational maps to linear sections of G(1,3+k) for cubics in C(14+12k) for k &lt -- = 2 -- 4. A divisor of rational Gushel-Mukai fourfolds -- 4.1. Del Pezzo fivefolds through a K3 surface of degree 14 and genus 8 -- 4.2. GM fourfolds through a K3 surface of degree 14 and genus 8 -- 4.3. Surfaces of degree 10 and sectional genus 6 with a node in P5 obtained as projections of general K3 surfaces of degree 10 and genus 6 -- 4.4. Rationality of the GM fourfolds in p-1(D10') -- 5. Computations via Macaulay2 -- Acknowledgement -- References.Unramified Cohomology, Algebraic Cycles and Rationality.Progress in mathematics (Boston, Mass.) ;Volume 342.Geometry, AlgebraicRational points (Geometry)MathematicsProblems, exercises, etcGeometria algebraicathubPunts racionals (Geometria)thubLlibres electrònicsthubGeometry, Algebraic.Rational points (Geometry)MathematicsGeometria algebraicaPunts racionals (Geometria)516.35Farkas GavrilMiAaPQMiAaPQMiAaPQBOOK996466409303316Rationality of varieties2899032UNISA03623nam 2200685 450 991079105210332120231206215649.00-88755-448-210.1515/9780887554483(CKB)2550000001263462(CEL)446445(OCoLC)860709294(CaBNVSL)slc00233234(Au-PeEL)EBL4828128(CaPaEBR)ebr11368030(CaONFJC)MIL551580(VaAlCD)20.500.12592/x43bhg(MiAaPQ)EBC4828128(DE-B1597)664707(DE-B1597)9780887554483(MiAaPQ)EBC3288465(EXLCZ)99255000000126346220170418h20132013 uy 0engurcnu||||||||rdacontentrdamediardacarrierRewriting the break event Mennonites & migration in Canadian literature /Robert ZachariasManitoba, Canada :University of Manitoba Press,2013.©20131 online resource (xii, 227 pages)Studies in Immigration and Culture,1914-1459 ;80-88755-747-3 0-88755-450-4 Includes bibliographical references and index.Machine generated contents note:ch. 1Mennonite History and/as Literature --ch. 2Gelassenheit or Exodus: My Harp Is Turned to Mourning and the Theo-Pedagogical Narrative --ch. 3Dreaming das Volklein: Lost in the Steppe and the Ethnic Narrative --ch. 4Individual in the Communal Story: The Russlander and the Trauma Narrative --ch. 5Strain of Diaspora: The Blue Mountains of China and the Meta-Narrative.Despite the fact that Russian Mennonites began arriving in Canada en masse in the 1870s, Mennonite Canadian literature has been marked by a compulsive retelling of the mass migration of some 20,000 Russian Mennonites to Canada following the collapse of the "Mennonite Commonwealth" in the 1920s. This privileging of a seminal dispersal within the community's broader history reveals the ways in which the 1920s narrative has come to function as an origin story, or "break event," for the Russian Mennonites in Canada, serving to affirm a communal identity across national and generational boundaries. Drawing on recent work in diaspora studies, Rewriting the Break Event offers a historicization of Mennonite literary studies in Canada, followed by close readings of five novels that rewrite the Mennonite break event through specific strains of emphasis, including a religious narrative, ethnic narrative, trauma narrative, and meta-narrative. The result is thoughtful and engaging exploration of the shifting contours of Mennonite collective identity, and an exciting new methodology that promises to resituate the discourse of migrant writing in Canada.Studies in immigration and culture ;8.MennonitesIn literatureSoviet UnionEmigration and immigrationCanadaEmigration and immigrationMennonite.Russian Mennonite.diaspora.ethnicity.immigration.literature.narrative.trauma.MennonitesIn literature.813/.5409921289771Zacharias Robert1977-1535706MiAaPQMiAaPQMiAaPQBOOK9910791052103321Rewriting the break event3847200UNINA