02777nam 2200553 450 99646640040331620230421142549.03-030-67111-910.1007/978-3-030-67111-2(CKB)4100000011954025(DE-He213)978-3-030-67111-2(MiAaPQ)EBC6640050(Au-PeEL)EBL6640050(OCoLC)1256541830(PPN)258876735(EXLCZ)99410000001195402520220202d2021 uy 0engurnn#008mamaatxtrdacontentcrdamediacrrdacarrierNon-local cell adhesion models symmetries and bifurcations in 1-D /Andreas Buttenschön, Thomas Hillen1st ed. 2021.Cham, Switzerland :Springer,[2021]©20211 online resource (VIII, 152 p. 35 illus., 15 illus. in color.)CMS/CAIMS Books in Mathematics3-030-67110-0 Introduction -- Preliminaries -- The Periodic Problem -- Basic Properties -- Local Bifurcation -- Global Bifurcation -- Non-local Equations with Boundary Conditions -- No-flux Boundary Conditions -- Discussion and future directions.This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level.CMS/CAIMS books in mathematics.Cell adhesionMathematical modelsInteracció cel·lularthubModels matemàticsthubLlibres electrònicsthubCell adhesionMathematical models.Interacció cel·lularModels matemàtics574.87Buttenschön Andreas850499Hillen ThomasMiAaPQMiAaPQMiAaPQBOOK996466400403316Non-Local Cell Adhesion Models1898863UNISA