00957nam--2200349---450-99000224687020331620090213153005.0000224687USA01000224687(ALEPH)000224687USA0100022468720041207d1960----km-y0itay0103----baengGB||||||||001yyWhat you should know about inflationHenry HazlittLondonNostrand1960VI, 152 p.24 cm20012001001-------2001332HAZLITT,Henry120647salbcISBD990002246870203316332 HAZ 1 (IEP II 36)13986 E.C.IEP II00197764BKECOSIAV11020041207USA011439RSIAV29020090213USA011530What you should know about inflation747075UNISA02974nam 2200697 450 99646637350331620211012154015.03-540-49041-810.1007/BFb0074039(CKB)1000000000437193(SSID)ssj0000323056(PQKBManifestationID)12064851(PQKBTitleCode)TC0000323056(PQKBWorkID)10296287(PQKB)10336414(DE-He213)978-3-540-49041-8(MiAaPQ)EBC5585024(MiAaPQ)EBC6523279(Au-PeEL)EBL5585024(OCoLC)1066197258(Au-PeEL)EBL6523279(OCoLC)1058160511(PPN)155168290(EXLCZ)99100000000043719320211012d1994 uy 0engurnn#008mamaatxtccrExplicit formulas for regularized products and series /Jay Jorgenson & Serge Lang, Dorian Goldfeld1st ed. 1994.Berlin, Germany ;New York, New York :Springer-Verlag,[1994]©19941 online resource (VIII, 160 p.)Lecture Notes in Mathematics,0075-8434 ;1593Bibliographic Level Mode of Issuance: Monograph3-540-58673-3 Includes bibliographical references and index.The theory of explicit formulas for regularized products and series forms a natural continuation of the analytic theory developed in LNM 1564. These explicit formulas can be used to describe the quantitative behavior of various objects in analytic number theory and spectral theory. The present book deals with other applications arising from Gaussian test functions, leading to theta inversion formulas and corresponding new types of zeta functions which are Gaussian transforms of theta series rather than Mellin transforms, and satisfy additive functional equations. Their wide range of applications includes the spectral theory of a broad class of manifolds and also the theory of zeta functions in number theory and representation theory. Here the hyperbolic 3-manifolds are given as a significant example.Lecture Notes in Mathematics,0075-8434 ;1593Spectral theory (Mathematics)Sequences (Mathematics)Number theoryFunctions, ZetaSpectral theory (Mathematics)Sequences (Mathematics)Number theory.Functions, Zeta.512/.711M36mscJorgenson Jay60132Goldfeld D(Dorian),Lang Serge1927-2005,MiAaPQMiAaPQMiAaPQBOOK996466373503316Explicit formulas for regularized products and series2831402UNISA