00984nam0-2200313 --450 991050380940332120211108123359.0978-88-93194-17-420211108d2019----kmuy0itay5050 baitagerITy 001yy<<I >>nostri amici batterila medicina del futuroguarisci naturalmente con la terapia del microbiomaAnne Katharina ZschockeCesenaMacro2019427 p.21 cm<<La >>biblioteca del benessereTraduzione di Paola Barberis e Silvia NeriniBatteriProcarioti579.323itaZschocke,Anne Katharina853853Nerini,SilviaBarberis,PaolaITUNINAREICATUNIMARCBK991050380940332160 579.3 ZSCA 2019659/2021FAGBCFAGBCNostri amici batteri1906462UNINA03083nam 22005055 450 99646582740331620200706044351.03-540-47755-110.1007/BFb0000035(CKB)1000000000230649(SSID)ssj0000322274(PQKBManifestationID)11233023(PQKBTitleCode)TC0000322274(PQKBWorkID)10287567(PQKB)11310558(DE-He213)978-3-540-47755-6(PPN)155198157(EXLCZ)99100000000023064920121227d1987 u| 0engurnn|008mamaatxtccrConstrained Global Optimization: Algorithms and Applications[electronic resource] /by Panos M. Pardalos, J. Ben Rosen1st ed. 1987.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,1987.1 online resource (IX, 143 p.) Lecture Notes in Computer Science,0302-9743 ;268Bibliographic Level Mode of Issuance: Monograph3-540-18095-8 Convex sets and functions -- Optimality conditions in nonlinear programming -- Combinatorial optimization problems that can be formulated as nonconvex quadratic problems -- Enumerative methods in nonconvex programming -- Cutting plane methods -- Branch and bound methods -- Bilinear programming methods for nonconvex quadratic problems -- Large scale problems -- Global minimization of indefinite quadratic problems -- Test problems for global nonconvex quadratic programming algorithms.Global optimization is concerned with the characterization and computation of global minima or maxima of nonlinear functions. Such problems are widespread in mathematical modeling of real world systems for a very broad range of applications. The applications include economies of scale, fixed charges, allocation and location problems, quadratic assignment and a number of other combinatorial optimization problems. More recently it has been shown that certain aspects of VLSI chip design and database problems can be formulated as constrained global optimization problems with a quadratic objective function. Although standard nonlinear programming algorithms will usually obtain a local minimum to the problem , such a local minimum will only be global when certain conditions are satisfied (such as f and K being convex).Lecture Notes in Computer Science,0302-9743 ;268Numerical analysisNumerical Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M14050Numerical analysis.Numerical Analysis.518Pardalos Panos Mauthttp://id.loc.gov/vocabulary/relators/aut318341Rosen J. Benauthttp://id.loc.gov/vocabulary/relators/autBOOK996465827403316Constrained global optimization384503UNISA01191nam2 22003013i 450 BRI045018220231121125410.020130109f1968 ||||0itac50 baitaitz01i xxxe z01n1W. Machepeace ThackerayTorinoUTETstampa 1968538 p., [1] c. di tav.ritr.19 cm.001UBO01254262001 ˜La œfiera delle vanitàW. Makepeace Thackeraya cura di Augusta Grosso GuidettiThackeray, William MakepeaceCFIV000598163526Thackeray, William M.CFIV120844Thackeray, William MakepeaceThackeray, W. M.PAVV025288Thackeray, William MakepeaceThackeray, Makepeace WilliamSBNV106161Thackeray, William MakepeaceITIT-0120130109IT-FR0017 Biblioteca umanistica Giorgio ApreaFR0017 BRI0450182Biblioteca umanistica Giorgio Aprea 52MAG 5 COLL M 138 52MAG0000059325 VMB RS A 2013010920130109 5213603174UNICAS