02681oam 2200457 450 99641832040331620210615100402.03-030-66843-610.1007/978-3-030-66843-3(CKB)5590000000430292(DE-He213)978-3-030-66843-3(MiAaPQ)EBC6449810(PPN)252514866(EXLCZ)99559000000043029220210615d2020 uy 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierMachine learning in clinical neuroimaging and radiogenomics in neuro-oncology third international workshop, mlcn 2020, and second international workshop, rno-ai 2020, held in conjunction with miccai 2020, lima, peru, october 4-8, 2020, proceedings /edited by Seyed Mostafa Kia, 7 others1st ed. 2020.Cham, Switzerland :Springer,[2020]©20201 online resource (XVIII, 305 p. 8 illus.) Image Processing, Computer Vision, Pattern Recognition, and Graphics ;12449Includes index.3-030-66842-8 This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2020, and the Second International Workshop on Radiogenomics in Neuro-oncology, RNO-AI 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020.* For MLCN 2020, 18 papers out of 28 submissions were accepted for publication. The accepted papers present novel contributions in both developing new machine learning methods and applications of existing methods to solve challenging problems in clinical neuroimaging. For RNO-AI 2020, all 8 submissions were accepted for publication. They focus on addressing the problems of applying machine learning to large and multi-site clinical neuroimaging datasets. The workshop aimed to bring together experts in both machine learning and clinical neuroimaging to discuss and hopefully bridge the existing challenges of applied machine learning in clinical neuroscience. *The workshops were held virtually due to the COVID-19 pandemic.Image Processing, Computer Vision, Pattern Recognition, and Graphics ;12449Machine learningMachine learning.006.31Kia Seyed MostafaMiAaPQMiAaPQUtOrBLWBOOK996418320403316Machine learning in clinical neuroimaging and radiogenomics in neuro-oncology2068892UNISA