00958cam0-22002891i-450-99000631388040332120041201153850.0000631388FED01000631388(Aleph)000631388FED0100063138820000112d1969----km-y0itay50------bay-------001yyElementi di diritto e tecnica doganaleSanto DattolaMilanoGiuffrè1969197 p.24 cmSulla cop.: Gli organismi internazionali e le istituzioni europee di cooperazione economica; il viaggiatore nel traffico internazionale: formalità e agevolazioni doganali336.211itaDattola,Santo141186ITUNINARICAUNIMARCBK990006313880403321XIV G 6067443FGBCH 121788DSSDSSElementi di diritto e tecnica doganale655668UNINA03296nam 22005895 450 99641827930331620200705005707.03-030-48788-110.1007/978-3-030-48788-1(CKB)4100000011325546(DE-He213)978-3-030-48788-1(MiAaPQ)EBC6298275(PPN)251095533(EXLCZ)99410000001132554620200701d2020 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierBoundary Value Problems and Markov Processes[electronic resource] Functional Analysis Methods for Markov Processes /by Kazuaki Taira3rd ed. 2020.Cham :Springer International Publishing :Imprint: Springer,2020.1 online resource (XVII, 502 p. 150 illus.) Lecture Notes in Mathematics,0075-8434 ;14993-030-48787-3 Includes bibliographical references and index.This 3rd edition provides an insight into the mathematical crossroads formed by functional analysis (the macroscopic approach), partial differential equations (the mesoscopic approach) and probability (the microscopic approach) via the mathematics needed for the hard parts of Markov processes. It brings these three fields of analysis together, providing a comprehensive study of Markov processes from a broad perspective. The material is carefully and effectively explained, resulting in a surprisingly readable account of the subject. The main focus is on a powerful method for future research in elliptic boundary value problems and Markov processes via semigroups, the Boutet de Monvel calculus. A broad spectrum of readers will easily appreciate the stochastic intuition that this edition conveys. In fact, the book will provide a solid foundation for both researchers and graduate students in pure and applied mathematics interested in functional analysis, partial differential equations, Markov processes and the theory of pseudo-differential operators, a modern version of the classical potential theory. .Lecture Notes in Mathematics,0075-8434 ;1499ProbabilitiesMathematical analysisAnalysis (Mathematics)Operator theoryProbability Theory and Stochastic Processeshttps://scigraph.springernature.com/ontologies/product-market-codes/M27004Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M12007Operator Theoryhttps://scigraph.springernature.com/ontologies/product-market-codes/M12139Probabilities.Mathematical analysis.Analysis (Mathematics).Operator theory.Probability Theory and Stochastic Processes.Analysis.Operator Theory.515.35Taira Kazuakiauthttp://id.loc.gov/vocabulary/relators/aut59537MiAaPQMiAaPQMiAaPQBOOK996418279303316Boundary value problems and Markov processes78656UNISA