02428nam 22004695 450 99641827850331620200813071510.03-030-32796-510.1007/978-3-030-32796-5(CKB)4100000011343253(DE-He213)978-3-030-32796-5(MiAaPQ)EBC6263941(PPN)25021802X(EXLCZ)99410000001134325320200713d2020 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierAlgebra and Galois Theories[electronic resource] /by Régine Douady, Adrien Douady1st ed. 2020.Cham :Springer International Publishing :Imprint: Springer,2020.1 online resource (XXIII, 462 p. 33 illus., 6 illus. in color.) Includes index.3-030-32795-7 Introduction -- Chapter 1. Zorn’s Lemma -- Chapter 2. Categories and Functors -- Chapter 3. Linear Algebra -- Chapter 4. Coverings -- Chapter 5. Galois Theory -- Chapter 6. Riemann Surfaces -- Chapter 7. Dessins d’Enfants -- Bibliography -- Index of Notation.Galois theory has such close analogies with the theory of coverings that algebraists use a geometric language to speak of field extensions, while topologists speak of "Galois coverings". This book endeavors to develop these theories in a parallel way, starting with that of coverings, which better allows the reader to make images. The authors chose a plan that emphasizes this parallelism. The intention is to allow to transfer to the algebraic framework of Galois theory the geometric intuition that one can have in the context of coverings. This book is aimed at graduate students and mathematicians curious about a non-exclusively algebraic view of Galois theory.AlgebraAlgebrahttps://scigraph.springernature.com/ontologies/product-market-codes/M11000Algebra.Algebra.512.32Douady Régineauthttp://id.loc.gov/vocabulary/relators/aut46390Douady Adrienauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK996418278503316Algebra and Galois Theories2377950UNISA