02799nam0 2200457 i 450 BVEE03780620170908093219.0u*i, g.o- b.a. Core (3) 1635 (A)feiae20120530d1635 ||||0itac50 balatalbitz01i xxxe z01nDictionarium Latino Epiroticum vna cum nonnullis vsitatioribus loquendi formulis. Per R.D. Franciscum Blanchum Epirotam Coll. de Propag. Fide alumnumRomaeTypis Sac. Congr. de Propag. Fide1635\16!, 222, \2! p.8ºSegn.: ââ¸A-Oâ¸Emblema della Congregazione sul front.1 v.IT-NA0079, V.F. XXIII* A 37ITRomaLO1L002924Bardhi, Frang <1606-1643>BVEV082091070706218Tipografia della Congregazione di Propaganda FideIEIV048731650Bianchi, FrancescoBVEV082112Bardhi, Frang <1606-1643>Blanchus, FranciscusBVEV082113Bardhi, Frang <1606-1643>Stamperia della Sagra Congregazione di Propaganda FedeBA1V006201Tipografia della Congregazione di Propaganda FideSacra Congregazione de Propaganda Fide <tipografia>BVEV062858Tipografia della Congregazione di Propaganda FideTypographia Sacrae Congregationis de Propaganda FideBVEV062862Tipografia della Congregazione di Propaganda FideTipografia della S. C. de Propaganda FideMUSV064997Tipografia della Congregazione di Propaganda FideTipografia Poliglotta della Sacra Congregazione de Propaganda FideMUSV087708Tipografia della Congregazione di Propaganda FidePropaganda FideMUSV087797Tipografia della Congregazione di Propaganda FideTipografia Poliglotta <Roma>MUSV087798Tipografia della Congregazione di Propaganda FideTypis Propagandae FideiPARV331660Tipografia della Congregazione di Propaganda FideTipografia della Sacra Congregazione de Propaganda FideSBNV004102Tipografia della Congregazione di Propaganda FideStamperia della Sacra Congregazione de Propaganda FideSBNV034479Tipografia della Congregazione di Propaganda FideITIT-NA007920120530IT-NA0079BVEE037806Biblioteca Nazionale Vittorio Emanuele III1 v. BNV.F. XXIII* A 37 BNVA10015095865 H 1 v.C 2012053020120530 BNDictionarium Latino Epiroticum vna cum nonnullis vsitatioribus loquendi formulis. Per R.D. Franciscum Blanchum Epirotam Coll. de Propag. Fide alumnum1481276UNISANNIO05674nam 22007335 450 99641826510331620200706173917.03-030-40822-110.1007/978-3-030-40822-0(CKB)4100000011232558(DE-He213)978-3-030-40822-0(MiAaPQ)EBC6198529(PPN)248395785(EXLCZ)99410000001123255820200513d2020 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierNumerical Semigroups [electronic resource] IMNS 2018 /edited by Valentina Barucci, Scott Chapman, Marco D'Anna, Ralf Fröberg1st ed. 2020.Cham :Springer International Publishing :Imprint: Springer,2020.1 online resource (VIII, 374 p. 32 illus.) Springer INdAM Series,2281-518X ;403-030-40821-3 Includes bibliographical references.Bernardini, M., Counting numerical semigroups by genus and even gaps via Kunz-coordinate vectors -- Borzì A., Patterns on the numerical duplication -- Bouyalat, B. and El Baghdadi, S., Primality in semigroup rings -- Delgado, M., Conjecture of Wilf: A survey -- Eliahou, S. and Fromentin, J., Gapsets of small multiplicity -- Eto K., Generic toric ideals and row-factorization matrices in numerical semigroups -- Fel Leonig G., Symmetric (not Complete Intersection) Semigroups Generated by Six Elements -- Gimenez P. and Srinivasan H., Syzygies of numerical semigroup rings, a survey through examples -- Gotti F., Irreducibility and factorizations in monoid rings -- Gotti F. and Gotti M., On the molecules of numerical semigroups, Puiseux monoids, and Puiseux algebras -- Karakaș H.I., Arf Numerical Semigroups With Multiplicity 9 and 10 -- Kien Do V. and Matsuoka N., Numerical semigroup rings of maximal embedding dimension with determinantal defining ideals -- Maugeri N. and Zito G., Embedding dimension of a good semigroup -- Moyano-Fernandez J. J., On multi-index filtrations associated to Weierstrass semigroups -- Oneto A. and Tamone G., On the Hilbert function of fourgenerated numerical semigroup rings • Șahin M., Lattice Ideals, Semigroups and Toric Codes -- Spirito D., The number of star operations on numerical semigroups and on related integral domains -- Steinburg N. and Wiegand R., Torsion in tensor products over one-dimensional domains -- Strazzanti F. and Watanabe K., Almost Symmetric Numerical Semigroups with Odd Generators.-Tozzo L., Poincaré series on good semigroup ideals -- Watanabe K., A short proof of Bresinskis Theorem on Gorenstein semigroup rings generated by 4 elements.This book presents the state of the art on numerical semigroups and related subjects, offering different perspectives on research in the field and including results and examples that are very difficult to find in a structured exposition elsewhere. The contents comprise the proceedings of the 2018 INdAM “International Meeting on Numerical Semigroups”, held in Cortona, Italy. Talks at the meeting centered not only on traditional types of numerical semigroups, such as Arf or symmetric, and their usual properties, but also on related types of semigroups, such as affine, Puiseux, Weierstrass, and primary, and their applications in other branches of algebra, including semigroup rings, coding theory, star operations, and Hilbert functions. The papers in the book reflect the variety of the talks and derive from research areas including Semigroup Theory, Factorization Theory, Algebraic Geometry, Combinatorics, Commutative Algebra, Coding Theory, and Number Theory. The book is intended for researchers and students who want to learn about recent developments in the theory of numerical semigroups and its connections with other research fields.Springer INdAM Series,2281-518X ;40Number theoryDiscrete mathematicsComputer softwareCommutative algebraCommutative ringsAlgebraic geometryNumber Theoryhttps://scigraph.springernature.com/ontologies/product-market-codes/M25001Discrete Mathematicshttps://scigraph.springernature.com/ontologies/product-market-codes/M29000Mathematical Softwarehttps://scigraph.springernature.com/ontologies/product-market-codes/M14042Commutative Rings and Algebrashttps://scigraph.springernature.com/ontologies/product-market-codes/M11043Algebraic Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M11019Number theory.Discrete mathematics.Computer software.Commutative algebra.Commutative rings.Algebraic geometry.Number Theory.Discrete Mathematics.Mathematical Software.Commutative Rings and Algebras.Algebraic Geometry.512.2Barucci Valentinaedthttp://id.loc.gov/vocabulary/relators/edtChapman Scottedthttp://id.loc.gov/vocabulary/relators/edtD'Anna Marcoedthttp://id.loc.gov/vocabulary/relators/edtFröberg Ralfedthttp://id.loc.gov/vocabulary/relators/edtMiAaPQMiAaPQMiAaPQBOOK996418265103316Numerical Semigroups2095478UNISA