04044nam 22006135 450 99641819820331620200704143915.03-030-45193-310.1007/978-3-030-45193-6(CKB)5310000000016627(MiAaPQ)EBC6236142(DE-He213)978-3-030-45193-6(PPN)248598112(EXLCZ)99531000000001662720200623d2020 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierDifferentiable Manifolds[electronic resource] A Theoretical Physics Approach /by Gerardo F. Torres del Castillo2nd ed. 2020.Cham :Springer International Publishing :Imprint: Birkhäuser,2020.1 online resource (447 pages)3-030-45192-5 1 Manifolds -- 2 Lie Derivatives -- 3 Differential Forms -- 4 Integral Manifolds -- 5 Connections -- 6. Riemannian Manifolds -- 7 Lie Groups -- 8 Hamiltonian Classical Mechanics -- Solutions -- References -- Index.This textbook gives a concise introduction to the theory of differentiable manifolds, focusing on their applications to differential equations, differential geometry, and Hamiltonian mechanics. The first three chapters introduce the basic concepts of the theory, such as differentiable maps, tangent vectors, vector and tensor fields, differential forms, local one-parameter groups of diffeomorphisms, and Lie derivatives. These tools are subsequently employed in the study of differential equations, connections, Riemannian manifolds, Lie groups, and Hamiltonian mechanics. Throughout, the book contains examples, worked out in detail, as well as exercises intended to show how the formalism is applied to actual computations and to emphasize the connections among various areas of mathematics. This second edition greatly expands upon the first by including more examples, additional exercises, and new topics, such as the moment map and fiber bundles. Detailed solutions to every exercise are also provided. Differentiable Manifolds is addressed to advanced undergraduate or beginning graduate students in mathematics or physics. Prerequisites include multivariable calculus, linear algebra, differential equations, and a basic knowledge of analytical mechanics Review of the first edition: This book presents an introduction to differential geometry and the calculus on manifolds with a view on some of its applications in physics. … The present author has succeeded in writing a book which has its own flavor and its own emphasis, which makes it certainly a valuable addition to the literature on the subject. Frans Cantrijn, Mathematical Reviews.Differential geometryPhysicsTopological groupsLie groupsMechanicsDifferential Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M21022Mathematical Methods in Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/P19013Topological Groups, Lie Groupshttps://scigraph.springernature.com/ontologies/product-market-codes/M11132Classical Mechanicshttps://scigraph.springernature.com/ontologies/product-market-codes/P21018Differential geometry.Physics.Topological groups.Lie groups.Mechanics.Differential Geometry.Mathematical Methods in Physics.Topological Groups, Lie Groups.Classical Mechanics.516.36Torres del Castillo Gerardo Fauthttp://id.loc.gov/vocabulary/relators/aut768202MiAaPQMiAaPQMiAaPQBOOK996418198203316Differentiable Manifolds1936217UNISA03985nam 2200721 450 991049573530332120201016235112.02-8218-9839-82-7606-2753-510.4000/books.pum.8747(CKB)2550000000108420(EBL)3280685(SSID)ssj0001634117(PQKBManifestationID)16385723(PQKBTitleCode)TC0001634117(PQKBWorkID)14949726(PQKB)10931600(CEL)443901(OCoLC)806126370(CaBNVSL)slc00229796(MiAaPQ)EBC3280685(MiAaPQ)EBC4750087(MiAaPQ)EBC6954541(Au-PeEL)EBL6954541(FrMaCLE)OB-pum-8747(PPN)233403159(VaAlCD)20.500.12592/x6zpcw(EXLCZ)99255000000010842020170125h20122012 uy 0freur|n|---|||||txtccrLe diable en ville Alexandre Silvio et l'émergence de la modernité populaire au Québec /Germain Lacasse, Johanne Massé, Bethsabée Poirier[Montreal, Quebećbec] :Les Presses de l'Université de Montréal,2012.©20121 online resource (304 p.)Description based upon print version of record.2-7606-2209-6 Includes bibliographical references.Ce livre raconte une histoire oubliée. Celle d’une étonnante modernité qui s’est propagée à Montréal au début du xxe siècle. Des spectacles amalgamant revues d’actualité, épisodes de films d’aventures américains, sketchs, chansons, parodies et monologues faisaient le bonheur du public venu se distraire, même le dimanche ! Sur scène et à côté de l’écran, c’est la langue de la rue et des manufactures qui se faisait entendre. Auteurs, comédiens, chanteurs et bonimenteurs contribuaient, soir après soir, à construire une culture canadienne-française moderne et audacieuse, voire irrévérencieuse, fortement éloignée du nationalisme catholique associé au terroir. Sous le couvert de la comédie, on se permettait d’aborder des sujets comme l’adultère, la vie amoureuse et la transformation des modes de vie, on critiquait la censure et la prohibition, on riait de l’incompétence et de la corruption des élus. Un homme en particulier est associé au développement de cette culture populaire urbaine et moderne, réprouvée par le clergé et l’élite conservatrice : Alexandre Silvio. Cet énergique personnage, qui s’est d’abord fait connaître comme bonimenteur de vues animées, est devenu l’un des principaux directeurs de théâtre à Montréal dans les années 1920. De nombreux dialogues et paroles de chansons de l’époque illustrent chacune des parties de ce livre. Ces textes savoureux et ces personnages extravagants, oubliés pendant près d’un siècle et ayant miraculeusement survécu au passage du temps, retrouvent ici une nouvelle vie. Pour notre plus grand plaisir !RevuesQuébec (Province)History20th centuryEntertainingQuébec (Province)History20th centuryCivilization, ModernLanguage and cultureQuébec (Province)Popular cultureQuébec (Province)History20th centuryRevuesHistoryEntertainingHistoryCivilization, Modern.Language and culturePopular cultureHistory306.09714Lacasse Germain943577Poirier Bethsabée1979-1249966Massé Johanne1249967MiAaPQMiAaPQMiAaPQBOOK9910495735303321Le diable en ville2896414UNINA03772nam 2200769z- 450 9910404086703321202102113-03928-803-2(CKB)4100000011302271(oapen)https://directory.doabooks.org/handle/20.500.12854/50457(oapen)doab50457(EXLCZ)99410000001130227120202102d2020 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierInteractions between Group Theory, Symmetry and CryptologyMDPI - Multidisciplinary Digital Publishing Institute20201 online resource (164 p.)3-03928-802-4 Cryptography lies at the heart of most technologies deployed today for secure communications. At the same time, mathematics lies at the heart of cryptography, as cryptographic constructions are based on algebraic scenarios ruled by group or number theoretical laws. Understanding the involved algebraic structures is, thus, essential to design robust cryptographic schemes. This Special Issue is concerned with the interplay between group theory, symmetry and cryptography. The book highlights four exciting areas of research in which these fields intertwine: post-quantum cryptography, coding theory, computational group theory and symmetric cryptography. The articles presented demonstrate the relevance of rigorously analyzing the computational hardness of the mathematical problems used as a base for cryptographic constructions. For instance, decoding problems related to algebraic codes and rewriting problems in non-abelian groups are explored with cryptographic applications in mind. New results on the algebraic properties or symmetric cryptographic tools are also presented, moving ahead in the understanding of their security properties. In addition, post-quantum constructions for digital signatures and key exchange are explored in this Special Issue, exemplifying how (and how not) group theory may be used for developing robust cryptographic tools to withstand quantum attacks.algebraic-geometry codealgorithms in groupsalternating groupBerlekamp-Massey algorithmbeyond birthday boundblock cipherbraid groupscryptanalysiscryptographydigital signaturesEngel wordserror-correcting codeeuclidean algorithmgeneralized self-shrinking generatorgroup key establishmentgroup theorygroup-based cryptographyideal cipher modelkey agreement protocolkey equationlightweight cryptographynon-commutative cryptographyNP-Completenessnumerical semigroupone-way functionspermutation grouppost-quantum cryptographyprotocol compilerprovable securitypseudo-random number generatorpseudorandom permutationReed-Solomon codessemigroup idealstatistical randomness testsSugiyama et al. algorithmsymmetryt-modified self-shrinking generatorWalnutDSAWeierstrass semigroupGonzález Vasco María Isabelauth1246436BOOK9910404086703321Interactions between Group Theory, Symmetry and Cryptology3032109UNINA