01813nam 2200361 n 450 99639228950331620200824121851.0(CKB)4940000000107620(EEBO)2248533056(UnM)99861956e(UnM)99861956(EXLCZ)99494000000010762019920810d1647 uy |engurbn||||a|bb|Vindiciæ redemptionis[electronic resource] In the fanning and sifting of Samuel Oates his exposition upon Mat. 13. 44. With a faithfull search after our Lords meaning in his two parables of the treasure and the pearl. Endeavoured in several sermons upon Mat. 13. 44, 45. Where in the former part, universal redemption is discovered to be a particular errour. (Something here is inserted in answer to Paulus Testardus, touching that tenet.) And in the later part, Christ the peculiar treasure and pearl of Gods elect is laid as the sole foundation; and the Christians faith and joy in him, and self-deniall for him, is raised as a sweet and sure superstructure. /By John Stalham, Pastour of the Church at Terling in EssexLondon, Printed by A.M. for Christopher Meredith, at the sign of the Crane in Pauls Church-yard1647[24], 182, [2] pWith a table of Scripture texts at end.Annotation on Thomason copy: "Ap: 17th".Reproduction of the original in the British Library.eebo-0018Sermons, English17th centurySermons, EnglishStalham Johnd. 1681.1014266Cu-RivESCu-RivESCStRLINWaOLNBOOK996392289503316Vindiciæ redemptionis2362619UNISA03004nam0 22005893i 450 VAN0026181220250221030540.500978-35-403-8528-820230721d1981 |0itac50 baengDE|||| |||||Geometric theory of semilinear parabolic equationsDan HenryBerlinSpringer1981vi, 350 p.24 cm001VAN001022502001 Lecture notes in mathematics210 Berlin [etc.]Springer84034G20Nonlinear differential equations in abstract spaces [MSC 2020]VANC024637MF35-XXPartial differential equations [MSC 2020]VANC019763MF35B10Periodic solutions to PDEs [MSC 2020]VANC022734MF35B15Almost and pseudo-almost periodic solutions to PDEs [MSC 2020]VANC022801MF35B30Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs [MSC 2020]VANC028997MF35B35Stability in context of PDEs [MSC 2020]VANC022130MF35B40Asymptotic behavior of solutions to PDEs [MSC 2020]VANC025025MF35B50Maximum principles in context of PDEs [MSC 2020]VANC022802MF35K55Nonlinear parabolic equations [MSC 2020]VANC022799MF35K60Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations [MSC 2020]VANC030681MF45DxxVolterra integral equations [MSC 2020]VANC022202MF47E05General theory of ordinary differential operators [MSC 2020]VANC037100MF47F05General theory of partial differential operators [MSC 2020]VANC037142MF80A25Combustion [MSC 2020]VANC022804MF92D25Population dynamics (general) [MSC 2020]VANC022805MFDifferential equationsKW:KDynamic systemsKW:KEquationsKW:KGeometric theoryKW:KInvariantsKW:KManifoldsKW:KParabolic differential equationsKW:KPartial Differential EquationsKW:KStabilityKW:KeXistKW:KBerlinVANL000066HenryDanielVANV044238478873Springer <editore>VANV108073650ITSOL20250829RICAhttps://doi.org/10.1007/BFb0089647E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00261812BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-book 6359 08eMF6359 20230731 Geometric Theory of semilinear parabolic equations262479UNICAMPANIA