01763nam 2200385Ia 450 99638984500331620200824132243.0(CKB)4940000000094235(EEBO)2240921494(OCoLC)ocm57402323e(OCoLC)57402323(EXLCZ)99494000000009423520050111d1612 uy 0engurbn||||a|bb|A dialogue philosophicall[electronic resource] Wherein natures secret closet is opened, and the cause of all motion in nature shewed ovt of matter and forme, tending to mount mans minde from nature to supernaturall and celestial promotion: and how all things exist in the number of three. : Together with the wittie inuention of an artificiall perpetuall motion, presented to the kings most excellent maiestie. /All which are discoursed betweene two speakers, Philadelph, and Theophrast, brought together by Thomas Tymme, professour of diuinitie.London, Printed by T.S. for Clement Knight, and are to be s[oul]d at his Shop in Paules Church-yard, at the signe the Holy Lambe.1612.[8], 72 p. illSignatures: A-K⁴.Imperfect: torn, stained, with loss of text.Reproduction of original in: Folger Shakespeare Library.eebo-0055ScienceEarly works to 1800AstronomyEarly works to 1800Perpetual motionEarly works to 1800ScienceAstronomyPerpetual motionTymme Thomasd. 1620.845471EAEEAEBOOK996389845003316A dialogue philosophicall2326966UNISA01659nam 2200517 450 991079492710332120180906081835.01-4704-4282-5(CKB)4340000000264678(MiAaPQ)EBC5346258(RPAM)20284984(PPN)225423375(EXLCZ)99434000000026467820180512d2017 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierTensor products and regularity properties of Cuntz semigroups /Ramon Antoine, Francesc Perera, Hannes ThielProvidence, RI :American Mathematical Society,[2017]©20171 online resource (206 pages)Memoirs of the American Mathematical Society,0065-9266 ;Volume 251, Number 11991-4704-2797-4 Includes bibliographical references and index.Memoirs of the American Mathematical Society ;Volume 251, Number 1199.C*-algebrasTensor productsTensor algebraSemigroupsC*-algebras.Tensor products.Tensor algebra.Semigroups.512/.554Antoine Ramon1973-1548904Perera Francesc1970-Thiel Hannes1982-MiAaPQMiAaPQMiAaPQBOOK9910794927103321Tensor products and regularity properties of Cuntz semigroups3806315UNINA