05386nam 2200625 a 450 99621775280331620230421041750.01-282-81740-X97866128174030-470-93831-51-59124-780-20-470-93830-7(CKB)1000000000000085(EBL)624371(SSID)ssj0000071811(PQKBManifestationID)11109944(PQKBTitleCode)TC0000071811(PQKBWorkID)10090509(PQKB)10543361(MiAaPQ)EBC624371(OCoLC)669166189(EXLCZ)99100000000000008519920326d1992 uy 0engur|n|---|||||txtccrEmergency relief system design using DIERS technology[electronic resource] the Design Institute for Emergency Relief Systems (DIERS) project manual /H.G. Fisher ... [et al.]New York DIERSc19921 online resource (576 p.)Description based upon print version of record.0-8169-0568-1 Includes bibliographical references and index.Emergency Relief System Design Using DIERS Technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual; Contents; Preface; Introduction; 1. Overview; 2. Design Institute for Emergency Relief Systems (DIERS); 3. A Strategy for Major Accidental Release Prevention; 4. A Strategy for Emergency Relief System Design; 5. An Approach to Emergency Relief System Design Assessment; 6. Two-Phase Vapor-Liquid Flow; 7. Two-Phase Vapor-Liquid Flow Onset and Disengagement; 8. Two-Phase Vapor-Liquid Hydrodynamics; 9. DlERS Bench-Scale Apparatus10. Runaway Reaction Emergency Relief System Design Computer Program11. References; Appendix A. DlERS Committees; Appendix B. DlERS Sponsors; Appendix C. DIERS Contractors; Chapter I. Vapor Disengagement Dynamics; 1. Overview; 1-1. Vapor Disengagement Dynamics; 1-2. Design Considerations; 2. Detailed Discussion; 2-1. Open Literature References; 2-2. Project Manual; 3. References; Appendix I-A. The Coupling Equation and Flow Models; Appendix I-B. Best Estimate Procedure to Calculate Two-Phase Vapor-Liquid Flow Onset/Disengagement; Appendix I-C. Fluid Behavior in Venting VesselsAppendix I-D. Energy and Material Balance Derivations for Emergency Pressure Relief of VesselsAnnex I-D1. Internal Energy and Venting Calculations; Chapter II. Pressure Relief System Flow; 1. Introduction; 1-1. Scope; 1-2. Organization; 1-3. Special Terminology; 2. Recommended Design Methods; 2-1. Newtonian Flow; 2-2. Complex Fluids; 2-3. Useful Approximations; 3. Technology Base; 3-1. General Flow Equations; 3-2. Nozzle Flow Models; 3-3. Sharp Reductions; 3-4. Pressure Recovery/Expansions/Equilibrations; 3-5. Pipe Flow; 3.6. Application to Pressure Relief System Elements; 3-7. Networks3-8. Complex Fluids4. Nomenclature; 5. Acknowledgments; 6. References; Appendix II-A. Thermophysical Property Requirements; Appendix II-B. Equilibrium Flash Calculations; Appendix II-C. Model Parameters for Pipe Entrance Sections; Appendix II-D. Computer Routines in SAFIRE Program; Appendix II-E. Example Problems; Appendix II-F. Generalized Correlations and Design Charts; Chapter III. DIERS Phase III Large-Scale Integral Tests; 1. Summary; 2. Introduction; 2-1. Program Objectivcs; 2-2. Program Description; 3. Test Configurations; 4. Test Results; 4-1. Tests T1 to T84-2. Tests V32-W1 to V32-W84-3. Tests T9, T10, T11, T14, and T25; 4-4. Tests T12 and T13; 4-5. Test T20; 4-6. Tests T17 and T18; 4-7. Tests T21, T22, T23, and T24; 4-8. ICRE Tats 32-6 to 32-11; 4-9. ICRE Tests 2000-1 to 2000-5; 4-10. ICRE Tests 32-14, 32-15, and 32-18; 5. Acknowledgments; 6. References; Appendix III-A. Test Configurations; Appendix III-B. Experimental Results and Model Comparisons; Appendix III-C. Kinetics Model for Styrene Polymerizations; Chapter IV. High Viscosity Flashing Two-Phase Flow; 1. Introduction; 1-1. General Discussion of High Viscosity Flow in Relief Systems1-2. Why High Viscosity Systems Require Special ConsiderationOSHA (29 CFR 1910.119) has recognized AIChE/DIERS two-phase flow publications as examples of ""good engineering practice"" for process safety management of highly hazardous materials. The prediction of when two-phase flow venting will occur, and the applicability of various sizing methods for two-phase vapor-liquid flashing flow, is of particular interest when designing emergency relief systems to handle runaway reactions. This comprehensive sourcebook brings together a wealth of information on methods that can be used to safely size emergency relief systems for two-phase vapor-liquid flow forChemical plantsSafety measuresRelief valvesChemical plantsSafety measures.Relief valves.660.281Fisher H. G22038Design Institute for Emergency Relief Systems.MiAaPQMiAaPQMiAaPQBOOK996217752803316Emergency relief system design using DIERS technology3066824UNISA