03205nam 22005895 450 99621762680331620200629204049.03-319-10088-210.1007/978-3-319-10088-3(CKB)3710000000467706(SSID)ssj0001558591(PQKBManifestationID)16183648(PQKBTitleCode)TC0001558591(PQKBWorkID)14819576(PQKB)10463572(DE-He213)978-3-319-10088-3(MiAaPQ)EBC5590709(PPN)188409572(EXLCZ)99371000000046770620150819d2015 u| 0engurnn|008mamaatxtccrMixed Twistor D-modules[electronic resource] /by Takuro Mochizuki1st ed. 2015.Cham :Springer International Publishing :Imprint: Springer,2015.1 online resource (XX, 487 p.) Lecture Notes in Mathematics,0075-8434 ;2125Bibliographic Level Mode of Issuance: Monograph3-319-10087-4 Introduction -- Preliminary -- Canonical prolongations -- Gluing and specialization of r-triples -- Gluing of good-KMS r-triples -- Preliminary for relative monodromy filtrations -- Mixed twistor D-modules -- Infinitesimal mixed twistor modules -- Admissible mixed twistor structure and variants -- Good mixed twistor D-modules -- Some basic property -- Dual and real structure of mixed twistor D-modules -- Derived category of algebraic mixed twistor D-modules -- Good systems of ramified irregular values.We introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem, and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular.  .Lecture Notes in Mathematics,0075-8434 ;2125Functions of complex variablesAlgebraic geometrySeveral Complex Variables and Analytic Spaceshttps://scigraph.springernature.com/ontologies/product-market-codes/M12198Algebraic Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M11019Functions of complex variables.Algebraic geometry.Several Complex Variables and Analytic Spaces.Algebraic Geometry.515.353Mochizuki Takuroauthttp://id.loc.gov/vocabulary/relators/aut319920MiAaPQMiAaPQMiAaPQBOOK996217626803316Mixed twistor D-modules1387912UNISA