00867nam0-22003131i-450-990003081770403321000308177FED01000308177(Aleph)000308177FED0100030817720000920d--------km-y0itay50------baitaITForeign-affiliate Activity and U.S. Skill UpgradingBruce A. Blonigen, Matthew J. SlaughterInvestimenti internazionaliSalariStati UnitiF/1.221G/2.10O/2.223Blonigen,Bruce A.Slaughter,Matthew J.ITUNINARICAUNIMARCBK990003081770403321PaperSESSESForeign-affiliate Activity and U.S. Skill Upgrading460134UNINAING0105002nam 2200685 450 99620603900331620230125213828.01-281-93756-897866119375600-470-38277-50-470-38278-310.1002/9780470382776(CKB)1000000000550404(EBL)380554(SSID)ssj0000123924(PQKBManifestationID)11134077(PQKBTitleCode)TC0000123924(PQKBWorkID)10015722(PQKB)11597121(MiAaPQ)EBC380554(CaBNVSL)mat05236612(IDAMS)0b00006481094c83(IEEE)5236612(OCoLC)299046773(PPN)185075770(EXLCZ)99100000000055040420090727h20152009 uy 0engur|n|---|||||txtccrClustering /Rui Xu, Donald C. Wunsch IIPiscataway, New Jersey :IEEE Press,c2009.[Piscataqay, New Jersey] :IEEE Xplore,2008.1 online resource (370 p.)IEEE Press Series on Computational Intelligence ;10Description based upon print version of record.0-470-27680-0 Includes bibliographical references (p. 293-330) and indexes.PREFACE -- 1. CLUSTER ANALYSIS -- 1.1. Classifi cation and Clustering -- 1.2. Defi nition of Clusters -- 1.3. Clustering Applications -- 1.4. Literature of Clustering Algorithms -- 1.5. Outline of the Book -- 2. PROXIMITY MEASURES -- 2.1. Introduction -- 2.2. Feature Types and Measurement Levels -- 2.3. Defi nition of Proximity Measures -- 2.4. Proximity Measures for Continuous Variables -- 2.5. Proximity Measures for Discrete Variables -- 2.6. Proximity Measures for Mixed Variables -- 2.7. Summary -- 3. HIERARCHICAL CLUSTERING. -- 3.1. Introduction -- 3.2. Agglomerative Hierarchical Clustering -- 3.3. Divisive Hierarchical Clustering -- 3.4. Recent Advances -- 3.5. Applications -- 3.6. Summary -- 4. PARTITIONAL CLUSTERING -- 4.1. Introduction -- 4.2. Clustering Criteria -- 4.3. K-Means Algorithm -- 4.4. Mixture Density-Based Clustering -- 4.5. Graph Theory-Based Clustering -- 4.6. Fuzzy Clustering -- 4.7. Search Techniques-Based Clustering Algorithms -- 4.8. Applications -- 4.9. Summary -- 5. NEURAL NETWORK-BASED CLUSTERING -- 5.1. Introduction -- 5.2. Hard Competitive Learning Clustering -- 5.3. Soft Competitive Learning Clustering -- 5.4. Applications -- 5.5. Summary -- 6. KERNEL-BASED CLUSTERING -- 6.1. Introduction -- 6.2. Kernel Principal Component Analysis -- 6.3. Squared-Error-Based Clustering with Kernel Functions -- 6.4. Support Vector Clustering -- 6.5. Applications -- 6.6. Summary -- 7. SEQUENTIAL DATA CLUSTERING -- 7.1. Introduction -- 7.2. Sequence Similarity -- 7.3. Indirect Sequence Clustering -- 7.4. Model-Based Sequence Clustering -- 7.5. Applications--Genomic and Biological Sequence -- 7.6. Summary -- 8. LARGE-SCALE DATA CLUSTERING -- 8.1. Introduction -- 8.2. Random Sampling Methods -- 8.3. Condensation-Based Methods -- 8.4. Density-Based Methods -- 8.5. Grid-Based Methods -- 8.6. Divide and Conquer -- 8.7. Incremental Clustering -- 8.8. Applications -- 8.9. Summary -- 9. DATA VISUALIZATION AND HIGH-DIMENSIONAL DATA CLUSTERING.9.1. Introduction -- 9.2. Linear Projection Algorithms -- 9.3. Nonlinear Projection Algorithms -- 9.4. Projected and Subspace Clustering -- 9.5. Applications -- 9.6. Summary -- 10. CLUSTER VALIDITY -- 10.1. Introduction -- 10.2. External Criteria -- 10.3. Internal Criteria -- 10.4. Relative Criteria -- 10.5. Summary -- 11. CONCLUDING REMARKS -- PROBLEMS -- REFERENCES -- AUTHOR INDEX -- SUBJECT INDEX.This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.IEEE Press Series on Computational Intelligence ;10Cluster analysisMultivariate analysisCluster analysis.Multivariate analysis.519.5354.69bclXu Rui508234Wunsch Donald Caut IEEE Computational Intelligence Society.CaBNVSLCaBNVSLCaBNVSLBOOK996206039003316Clustering1887927UNISA01172nam a2200301 i 450099100106467970753620020507110002.0970308s1969 ne ||| | eng b10168540-39ule_instLE00641525ExLDip.to Fisicaita53(082.2)53.8.6538'.3QC762Colloque on magnetic resonance and radiofrequency spectroscopy <1968 ; Grenoble>462740Magnetic resonance and radiofrequency spectroscopy :proceedings of the 15th Colloque A.M.P.E.R.E., Grenoble, September 1968 /edited by P. AverbuchAmsterdam :North-Holland Publ. Co.,19691 v.Nuclear magnetic resonanceRadiofrequency spectroscopyAverbuch, P..b1016854021-09-0627-06-02991001064679707536LE006 53.8.5+53.8.6 AVE12006000057547le006-E0.00-l- 00000.i1020567627-06-02Magnetic resonance and radiofrequency spectroscopy188335UNISALENTOle00601-01-97ma -engne 01