02972nam 2200601Ia 450 99620316380331620230829002502.01-282-34736-597866123473680-470-14358-40-470-14397-5(CKB)1000000000376795(EBL)456097(OCoLC)609844774(SSID)ssj0000354367(PQKBManifestationID)11245291(PQKBTitleCode)TC0000354367(PQKBWorkID)10315155(PQKB)11228063(MiAaPQ)EBC456097(EXLCZ)99100000000037679520751029d1967 uy 0engur|n|---|||||txtccrIntermolecular forces[electronic resource] /edited by Joseph O. HirshchfelderNew York Interscience Publishersc19671 online resource (658 p.)Advances in chemical physics ;12Description based upon print version of record.0-470-40067-6 Includes bibliograpic references and indexes.INTERMOLECULAR FORCES; CONTENTS; PART I. THEORY; 1. The Nature of Intermolecular Forces; 2. Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces; 3. New Methods for Calculating Long-Range Intermolecular Forces; 4. Very Long-Range (Retardation Effect) Intermolecular Forces; 5. Reaction Field Techniques and Their Applications to Inter-molecular Forces; 6. Intermolecular Forces in Liquids; PART II. EXPERIMENTAL DETERMINATIONS; 7. Methods for the Determination of Intermolecular Forces; 8. Determination of Intermolecular Forces via Low-Energy Molecular Beam Scattering9. Microwave Pressure Broadening and Its Application to Inter-molecular Forces10. Intermolecular Forces Determined by Nuclear Magnetic Resonance; Author Index; Subject Index; Cumulative Indexes to Volumes 1-13The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.Advances in chemical physics ;v. 12.Molecular dynamicsIntermolecular forcesMolecular dynamics.Intermolecular forces.541541.305541/.08Hirschfelder Joseph O.1911-199017710MiAaPQMiAaPQMiAaPQBOOK996203163803316Intermolecular Forces354800UNISA01292nam0 22003133i 450 RAV010804820231121125633.020150223d1977 ||||0itac50 baitaitz01i xxxe z01nIl cittadino totalepartecipazione, eguaglianza e liberta nelle democrazie d'oggiLiberalismo e democrazia di Giovanni SartoriCittadini e partecipazione al di la della democrazia rappresentativa? di Ralf DahrendorfTorinoBiblioteca della Liberta197759 p.21 cm.Quaderni di Biblioteca della libertà3001LO102482842001 Quaderni di Biblioteca della libertà3DemocraziaFIRRMLC006672E321.821Sartori, Giovanni <1924-2017>CFIV062588070743513Dahrendorf, RalfCFIV04405407046050ITIT-0120150223IT-FR0017 Biblioteca umanistica Giorgio ApreaFR0017 RAV0108048Biblioteca umanistica Giorgio Aprea 52MAG OPU 345 52MAG0000014555 VMN RS A 2015022320150223 52Cittadino totale3615556UNICAS10563nam 2200625 450 991083014020332120230629225830.01-119-52715-51-119-52719-81-119-52714-7(CKB)4940000000617077(MiAaPQ)EBC6795951(Au-PeEL)EBL6795951(OCoLC)1285169734(EXLCZ)99494000000061707720220719d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierHarmonic modeling of voltage source converters using simple numerical methods /Ryan Kuo-Lung Lia, Ramadhani Kurniawan Subroto. Bing Hao LinHoboken, New Jersey :John Wiley & Sons, Incorporated,[2021]©20211 online resource (419 pages)IEEE Press.1-119-52713-9 Includes bibliographical references and index.Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Symbols -- Chapter 1 Fundamental Theory -- 1.1 Background -- 1.2 Definition of Harmonics -- 1.3 Fourier Series -- 1.3.1 Trigonometric Form -- 1.3.2 Phasor Form -- 1.3.3 Exponential Form -- 1.4 Waveform Symmetry -- 1.4.1 Even Symmetry -- 1.4.2 Odd Symmetry -- 1.4.3 Half‐Wave Symmetry -- 1.5 Phase Sequence of Harmonics -- 1.6 Frequency Domain and Harmonic Domain -- 1.7 Power Definitions -- 1.7.1 Average Power -- 1.7.2 Apparent and Reactive Power -- 1.8 Harmonic Indices -- 1.8.1 Total Harmonic Distortion (THD) -- 1.8.2 Total Demand Distortion (TDD) -- 1.8.3 True Power Factor -- 1.9 Detrimental Effects of Harmonics -- 1.9.1 Resonance -- 1.9.2 Misoperations of Meters and Relays -- 1.9.3 Harmonics Impact on Motors -- 1.9.4 Harmonics Impact on Transformers -- 1.10 Characteristic Harmonic and Non‐Characteristic Harmonic -- 1.11 Harmonic Current Injection Method -- 1.12 Steady‐State vs. Transient Response -- 1.13 Steady‐State Modeling -- 1.14 Large‐Signal Modeling vs. Small‐Signal Modeling -- 1.15 Discussion of IEEE Standard (STD) 519 -- 1.16 Supraharmonics -- Chapter 2 Power Electronics Basics -- 2.1 Some Basics -- 2.2 Semiconductors vs. Wide Bandgap Semiconductors -- 2.3 Types of Static Switches -- 2.3.1 Uncontrolled Static Switch -- 2.3.2 Semi‐Controllable Switches -- 2.3.3 Controlled Switch -- 2.4 Combination of Switches -- 2.5 Classification Based on Commutation Process -- 2.6 Voltage Source Converter vs. Current Source Converter -- Chapter 3 Basic Numerical Iterative Methods -- 3.1 Definition of Error -- 3.2 The Gauss-Seidel Method -- 3.3 Predictor‐Corrector -- 3.4 Newton's Method -- 3.4.1 Root Finding -- 3.4.2 Numerical Integration -- 3.4.3 Power Flow -- 3.4.4 Harmonic Power Flow -- 3.4.5 Shooting Method -- 3.4.6 Advantages of Newton's Method -- 3.4.7 Quasi‐Newton Method.3.4.8 Limitation of Newton's Method -- 3.5 PSO -- Chapter 4 Matrix Exponential -- 4.1 Definition of Matrix Exponential -- 4.2 Evaluation of Matrix Exponential -- 4.2.1 Inverse Laplace Transform -- 4.2.2 Cayley-Hamilton Method -- 4.2.3 Padé Approximation -- 4.2.4 Scaling and Squaring -- 4.3 Krylov Subspace Method -- 4.4 Krylov Space Method with Restarting -- 4.5 Application of Augmented Matrix on DC‐DC Converters -- 4.6 Runge-Kutta Methods -- Chapter 5 Modeling of Voltage Source Converters -- 5.1 Single‐Phase Two‐Level VSCs -- 5.1.1 Switching Functions -- 5.1.2 Switched Circuits -- 5.2 Three‐Phase Two‐Level VSCs -- 5.3 Three‐Phase Multilevel Voltage Source Converter -- 5.3.1 Multilevel PWM -- 5.3.2 Diode Clamped Multilevel VSCs -- 5.3.3 Flying Capacitor Multilevel VSCs -- 5.3.4 Cascaded Multi‐Level VSCs -- 5.3.5 Modular Multi‐Level VSC -- Chapter 6 Frequency Coupling Matrices -- 6.1 Construction of FCM in the Harmonic Domain -- 6.2 Construction of FCM in the Time Domain -- Chapter 7 General Control Approaches of a VSC -- 7.1 Reference Frame -- 7.1.1 Stationary‐abc Frame -- 7.1.2 Stationary‐< -- 3:spiinlinemath 0:display& -- equals -- "inline" 0:overflow& -- equals -- "scroll" > -- αβ Frame -- 7.1.3 Synchronous‐< -- 3:spiinlinemath 0:display& -- equals -- "inline" 0:overflow& -- equals -- "scroll" > -- dq Frame -- 7.1.4 Phase‐Locked Loop -- 7.2 Control Strategies -- 7.2.1 Vector‐Current Controller -- 7.2.2 Direct Power Controller -- 7.2.3 DC‐bus Voltage Controller -- 7.2.4 Circulating Current Controller -- Chapter 8 Generalized Steady‐State Solution Procedure for Closed‐Loop Converter Systems -- 8.1 Introduction -- 8.2 Generalized Procedure -- 8.2.1 Step 1: Determine How and Where to Break the Loop -- 8.2.2 Step 2: Check if the Calculation Flows of the Broken System are Feasible.8.2.3 Step 3: Determine What Domain of Each Component in the System Should be Modeled -- 8.2.4 Step 4: Formulate the Mismatch Equations -- 8.2.5 Step 5: Iterate to Find the Solution -- 8.3 Previously Proposed Methods Derived from the Proposed Solution Procedures -- 8.3.1 Steady‐State Methods Derived from Loop‐Breaking 1 Method -- 8.3.2 Steady‐State Methods Derived from Loop‐Breaking 2 Method -- 8.4 The Loop‐Breaking 3 Method -- Chapter 9 Loop‐Breaking 1 Method -- 9.1 A Typical Two‐Level VSC with AC Current Control and DC Voltage Control -- 9.2 Loop‐Breaking 1 Method for a Two‐Level VSC -- 9.2.1 Block 1 -- 9.2.2 Current Controller Block -- 9.2.3 Voltage Controller Block -- 9.3 Solution Flow Diagram -- 9.3.1 Initialization -- 9.3.2 Jacobian Matrix -- 9.3.3 Number of Modulating Voltage Harmonics to be Included -- Chapter 10 Loop‐Breaking 2 Method for Solving a VSC -- 10.1 Modeling for a Closed‐Loop DC‐DC Converter -- 10.1.1 Model of the Buck Converter -- 10.1.2 Constraints of Steady‐State -- 10.1.3 Switching Time Constraints -- 10.1.4 Solution Flow Diagram -- 10.2 Two‐Level VSC Modeling: Open‐Loop Equations -- 10.2.1 Steady‐State Constraints -- 10.2.2 Switching Time Constraints -- 10.2.3 Solution Flow Diagram -- 10.2.4 Initialization -- 10.2.5 Jacobian Matrix -- 10.3 Comparison Between the LB 1 and LB 2 Methods -- 10.3.1 Case #1: Balanced System -- 10.3.2 Case #2: Unbalanced System with AC Waveform Exhibiting Half‐Wave Symmetry -- 10.3.3 Case #3: Unbalanced System, No Waveform Symmetry -- 10.4 Large‐Signal Modeling for Line‐Commutated Power Converter -- 10.4.1 Discontinuous Conduction Mode -- 10.4.2 Continuous Conduction Mode -- 10.4.3 Steady‐State Constraint Equations -- 10.4.4 General Comments -- Chapter 11 Loop‐Breaking 3 Method -- 11.1 OpenDSS -- 11.2 Interfacing OpenDSS with MATLAB -- 11.3 Interfacing OpenDSS with Harmonic Models of VSCs.Chapter 12 Small‐Signal Harmonic Model of a VSC -- 12.1 Problem Statement -- 12.2 Gauss-Seidel LB 3 and Newton LB 3 -- 12.2.1 Current Injection Method -- 12.2.2 Norton Circuit Method -- 12.3 Small‐Signal Analysis of DC‐DC Converter -- 12.4 Small‐Signal Analysis of a Two‐Level VSC -- 12.4.1 Approach from Section 12.3 -- 12.4.2 Simpler Approach -- Chapter 13 Parameter Estimation for a Single VSC -- 13.1 Background on Parameter Estimation -- 13.2 Parameter Estimator Based on White‐Box‐and‐Black‐Box Models -- 13.3 Estimation Validations -- 13.3.1 Experimental Validation -- 13.3.2 PSCAD/EMTDC Validation -- Chapter 14 Parameter Estimation for Multiple VSCs with Domain Adaptation -- 14.1 Introduction of Deep Learning -- 14.2 Domain Adaptation -- 14.3 Parameter Estimation for Multiple VSCs -- 14.4 Notations for DA -- 14.5 Supervised Domain Adaptation for Regression -- 14.6 Supervised Domain Adaptation for Classification -- 14.7 Test Setup -- 14.7.1 Data Generator -- 14.7.2 Data Preprocessing -- 14.8 Performance Metrics -- 14.8.1 R square (Regression) -- 14.8.2 Mean Absolute Percentage Error, MAPE (Regression) -- 14.8.3 Accuracy (Classification) -- 14.8.4 F1 score (Classification) -- 14.9 Test Results -- 14.9.1 Classification Task on Multiple VSC -- 14.9.2 Regression Task on Multiple VSC -- 14.10 Software for Running the Codes -- 14.11 Implementation of Domain Adaptation -- 14.11.1 Data Generation -- 14.11.2 Regression -- 14.11.3 Classification Network -- References -- Index -- EULA."The ac electric power systems are essentially designed to operate with sinusoidal voltages and currents at frequencies of 50 or 60 Hz. However, certain types of power components or loads produce currents and voltages with frequencies that are integer multiples of these frequencies (i.e. the fundamental frequencies). These higher frequencies are a form of electrical pollution known as power system harmonics. Power system harmonics are not a new phenomenon, and it is as old as the distribution of alternating current, which began in 1895-1896 [5]. It is reported that in 1893, Charles Proteus Steinmetz had worked on the problem of motor heating while working at Thomson-Houston [6]. After rigorous calculations and experimental validation, Steinmetz concluded that the problem was due to the resonance in the transmission circuit feeding the plant and a generator with a substantial amount of waveform distortion. Consequently, Steinmetz proposed two solutions to overcome this harmonic problem. The first was to reduce the system frequency to one-half of its original value. That is, to reduce the original frequency value of 125 Hz to a new value of 62.5 Hz. Note that at that time, most of the single-phase generator were operated at 125 Hz, 140 Hz or 1331"--Provided by publisher.IEEE Press.Harmonics (Electric waves)Mathematical modelsElectromagnetic interferenceMathematical modelsElectric power-plantsEquipment and suppliesElectric current convertersMathematical modelsNumerical analysisHarmonics (Electric waves)Mathematical models.Electromagnetic interferenceMathematical models.Electric power-plantsEquipment and supplies.Electric current convertersMathematical models.Numerical analysis.621.3815322Lian Ryan Kuo-Lung1640970Lin Bing HaoSubroto Ramadhani KurniawanMiAaPQMiAaPQMiAaPQBOOK9910830140203321Harmonic modeling of voltage source converters using simple numerical methods3984764UNINA