05144nam 2200661 450 99620236890331620170815114341.01-280-44809-197866104480980-470-36131-X0-471-78525-31-61583-844-90-471-78524-5(CKB)1000000000354666(EBL)257216(OCoLC)71432002(SSID)ssj0000140092(PQKBManifestationID)11146875(PQKBTitleCode)TC0000140092(PQKBWorkID)10030048(PQKB)10790636(MiAaPQ)EBC257216(PPN)204365260(EXLCZ)99100000000035466620160815h20062006 uy 0engur|n|---|||||txtccrDistillation design and control using Aspen simulation /William L. LuybenHoboken, New Jersey :Wiley-Interscience,2006.©20061 online resource (361 p.)"AIChE."Includes index.0-471-77888-5 DISTILLATION DESIGN AND CONTROL USING ASPENTM SIMULATION; CONTENTS; PREFACE; 1 FUNDAMENTALS OF VAPOR-LIQUID PHASE EQUILIBRIUM (VLE); 1.1 Vapor Pressure; 1.2 Binary VLE Phase Diagrams; 1.3 Physical Property Methods; 1.4 Relative Volatility; 1.5 Bubblepoint Calculations; 1.6 Ternary Diagrams; 1.7 VLE Nonideality; 1.8 Residue Curves for Ternary Systems; 1.9 Conclusion; 2 ANALYSIS OF DISTILLATION COLUMNS; 2.1 Design Degrees of Freedom; 2.2 Binary McCabe-Thiele Method; 2.3 Approximate Multicomponent Methods; 2.4 Analysis of Ternary Systems Using DISTIL; 2.5 Conclusion3 SETTING UP A STEADY-STATE SIMULATION3.1 Configuring a New Simulation; 3.2 Specifying Chemical Components and Physical Properties; 3.3 Specifying Stream Properties; 3.4 Specifying Equipment Parameters; 3.5 Running the Simulation; 3.6 Using "Design Spec/Vary" Function; 3.7 Finding the Optimum Feed Tray and Minimum Conditions; 3.8 Column Sizing; 3.9 Conclusion; 4 DISTILLATION ECONOMIC OPTIMIZATION; 4.1 Heuristic Optimization; 4.2 Economic Basis; 4.3 Results; 4.4 Operating Optimization; 4.5 Conclusion; 5 MORE COMPLEX DISTILLATION SYSTEMS; 5.1 Methyl Acetate/Methanol/Water System5.2 Ethanol Dehydration5.3 Heat-Integrated Columns; 5.4 Conclusion; 6 STEADY-STATE CALCULATIONS FOR CONTROL STRUCTURE SELECTION; 6.1 Summary of Methods; 6.2 Binary Propane/Isobutane System; 6.3 Ternary BTX System; 6.4 Multicomponent Hydrocarbon System; 6.5 Ternary Azeotropic System; 6.6 Conclusion; 7 CONVERTING FROM STEADY STATE TO DYNAMIC SIMULATION; 7.1 Equipment Sizing; 7.2 Exporting to Aspen Dynamics; 7.3 Opening the Dynamic Simulation in Aspen Dynamics; 7.4 Installing Basic Controllers; 7.5 Installing Temperature and Composition Controllers; 7.6 Performance Evaluation7.7 Comparison with Economic Optimum Design7.8 Conclusion; 8 CONTROL OF MORE COMPLEX COLUMNS; 8.1 Methyl Acetate Column; 8.2 Columns with Partial Condensers; 8.3 Control of Heat-Integrated Distillation Columns; 8.4 Control of Azeotropic Columns/Decanter System; 8.5 Conclusion; 9 REACTIVE DISTILLATION; 9.1 Introduction; 9.2 Types of Reactive Distillation Systems; 9.3 TAME Process Basics; 9.4 TAME Reaction Kinetics and VLE; 9.5 Plantwide Control Structure; 9.6 Conclusion; 10 CONTROL OF SIDESTREAM COLUMNS; 10.1 Liquid Sidestream Column; 10.2 Vapor Sidestream Column10.3 Liquid Sidestream Column with Stripper10.4 Vapor Sidestream Column with Rectifier; 10.5 Sidestream Purge Column; 10.6 Conclusion; 11 CONTROL OF PETROLEUM FRACTIONATORS; 11.1 Petroleum Fractions; 11.2 Characterization of Crude Oil; 11.3 Steady-State Design of PREFLASH Column; 11.4 Control of PREFLASH Column; 11.5 Steady-State Design of Pipestill; 11.6 Control of Pipestill; 11.7 Conclusion; INDEXA timely treatment of distillationcombining steady-state designand dynamic controllabilityAs the world continues to seek new sources of energy, the distillation process remains one of the most important separation methods in the chemical, petroleum, and energy industries. And as new renewable sources of energy and chemical feedstocks become more universally utilized, the issues of distillation design and control will remain vital to a future sustainable lifestyle.Distillation Design and Control Using Aspen Simulation introduces the current status and future implications of Distillation apparatusDesign and constructionChemical process controlSimulation methodsDistillation apparatusDesign and construction.Chemical process controlSimulation methods.660.2842660/.28425Luyben William L.16520American Institute of Chemical Engineers.MiAaPQMiAaPQMiAaPQBOOK996202368903316Distillation Design and Control Using Aspen SImulation716264UNISA