01215nam--2200385---450-99000596390020331620140917115850.088-87021-01-5000596390USA01000596390(ALEPH)000596390USA0100059639020140917d1996----km-y0itay50------baitaIT||||||||001yyAssisi e gli Umbri nell'antichitàatti del convegno internazionale, Assisi, 18-21 dicembre 1991a cura di Giorgio Bonamente, Filippo CoarelliAssisiSocietà editrice Minerva1996658 p.ill.24 cmIn testa al front. : Accademia Properziana del Subasio di Assisi, Università degli studi di Perugia20012001001-------2001UmbriaArcheologiaStoriaBNCF937.45BONAMENTE,GiorgioCOARELLI,FilippoITsalbcISBD990005963900203316XM 904648 DSABKDSADSA9020140917USA011158Assisi e gli Umbri nell'antichità1071417UNISA03723nam 22006735 450 991030025370332120221118234057.03-319-20997-310.1007/978-3-319-20997-5(CKB)3710000000492413(EBL)4178362(SSID)ssj0001585099(PQKBManifestationID)16265773(PQKBTitleCode)TC0001585099(PQKBWorkID)14865504(PQKB)10266295(DE-He213)978-3-319-20997-5(MiAaPQ)EBC4178362(PPN)190533846(EXLCZ)99371000000049241320151012d2015 u| 0engur|n|---|||||txtccrEvolution equations of von Karman type /by Pascal Cherrier, Albert Milani1st ed. 2015.Cham :Springer International Publishing :Imprint: Springer,2015.1 online resource (155 p.)Lecture Notes of the Unione Matematica Italiana,1862-9113 ;17Description based upon print version of record.3-319-20996-5 Includes bibliographical references and index.Operators and Spaces -- Weak Solutions -- Strong Solutions, m + k _ 4 -- Semi-Strong Solutions, m = 2, k = 1.In these notes we consider two kinds of nonlinear evolution problems of von Karman type on Euclidean spaces of arbitrary even dimension. Each of these problems consists of a system that results from the coupling of two highly nonlinear partial differential equations, one hyperbolic or parabolic and the other elliptic. These systems take their name from a formal analogy with the von Karman equations in the theory of elasticity in two dimensional space. We establish local (respectively global) results for strong (resp., weak) solutions of these problems and corresponding well-posedness results in the Hadamard sense. Results are found by obtaining regularity estimates on solutions which are limits of a suitable Galerkin approximation scheme. The book is intended as a pedagogical introduction to a number of meaningful application of classical methods in nonlinear Partial Differential Equations of Evolution. The material is self-contained and most proofs are given in full detail. The interested reader will gain a deeper insight into the power of nontrivial a priori estimate methods in the qualitative study of nonlinear differential equations.Lecture Notes of the Unione Matematica Italiana,1862-9113 ;17Differential equations, PartialPhysicsGeometry, DifferentialPartial Differential Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12155Mathematical Methods in Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/P19013Differential Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M21022Differential equations, Partial.Physics.Geometry, Differential.Partial Differential Equations.Mathematical Methods in Physics.Differential Geometry.515.353Cherrier Pascalauthttp://id.loc.gov/vocabulary/relators/aut477813Milani Albertauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK9910300253703321Evolution equations of von Karman type1522726UNINA